DOI QR코드

DOI QR Code

Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process

  • Park, Shin-Ae (School of Mechanical Engineering, Pusan National University) ;
  • Shim, Kyubin (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Kyu-Su (School of Mechanical Engineering, Pusan National University) ;
  • Moon, Young Hoon (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University)
  • Received : 2019.05.08
  • Accepted : 2019.07.05
  • Published : 2019.12.31

Abstract

Water electrolysis is known as the most sustainable and clean technology to produce hydrogen gas, however, a serious drawback to commercialize this technology is due to the slow kinetics in oxygen evolution reaction (OER). Thus, we report on the nanoporous IrNi thin film that reveals a markedly enhanced OER activity, which is attained through a selective etching of Os from the IrNiOs alloy thin film. Interestingly, electrochemical selective etching of Os leads to the formation of 3-dimensionally interconnected nanoporous structure providing a high electrochemical surface area (ECSA, 80.8 ㎠), which is 90 fold higher than a bulk Ir surface (0.9 ㎠). The overpotential at the nanoporous IrNi electrode is markedly lowered to be 289 mV at 10 mA cm-2, compared with bulk Ir (375 mV at 10 mA cm-2). The nanoporous IrNi prepared through the selective de-alloying of Os is promising as the anode material for a water electrolyzer.

Keywords

References

  1. MS. Dresselhaus and IL. Thomas, Nature., 2001, 414, 332-337. https://doi.org/10.1038/35104599
  2. L. Schlapbach and A. Zuttel, Nature., 2001, 414, 353-358. https://doi.org/10.1038/35104634
  3. BCH. Steele and A. Heinzel. Nature., 2001, 414, 345-352. https://doi.org/10.1038/35104620
  4. VR. Stamenkovic, D. Strmcnik, PP. Lopes and NM. Markovic, Nat Mater., 2017, 16(1), 57-69. https://doi.org/10.1038/nmat4738
  5. J. Moorhouse, Modern chlor-alkali technology, Willey, New York, 2001.
  6. T. O'Brien, TV. Bommaraju and F. Hine, Handbook of Chlor-Alkali Technology, Kluewer Academic/Plenum, New York, 2005.
  7. JD. Holladay, J. Hu and DL. King and Y. Wang, Catal Today., 2009, 139(4), 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  8. I. Katsounaros, S. Cherevko and AR. Zeradjanin and Karl J. J. Mayrhofer, Angew Chem Int Ed., 2014, 53(1), 102-121. https://doi.org/10.1002/anie.201306588
  9. D. Pletcher and FC Walsh, Industrial Electrochemistry. Springer, Germany, 1993.
  10. A. Marshall, B. Borresen, G. Hagen, M. Tsypkin and R. Tunold, Energy., 2007, 32(4), 431-436. https://doi.org/10.1016/j.energy.2006.07.014
  11. TR. Cook, DK. Dogutan, SY. Reece, Y. Surendranath, TS. Teets and DG. Nocera, Chem Rev., 2010, 110(11), 6474-6502. https://doi.org/10.1021/cr100246c
  12. T. Reier, HN. Nong, D. Teschner, R. Schlogl and P. Strasser, Adv Energy Mater., 2017, 7(1), 1601275. https://doi.org/10.1002/aenm.201601275
  13. T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2012, 2(8), 1765-1772. https://doi.org/10.1021/cs3003098
  14. N. Hodnik, P. Jovanovic, A. Pavlisic, B. Jozinovic, M. Zorko, M. Bele, V. S. Selih. M. Sala, S. Hocevar, M. Gaberscek, J. Phys. Chem. C 2015, 119(18), 10140-10147 https://doi.org/10.1021/acs.jpcc.5b01832
  15. M. Wohlfahrt-Mehrens and J. Heitbaum, J Electroanal Chem., 1987, 237(2), 251-260. https://doi.org/10.1016/0022-0728(87)85237-3
  16. KC. Neyerlin, G. Bugosh, R. Forgie, Z. Liu and P. Strasser, J Electrochem Soc., 2009, 156(3), B363-B369. https://doi.org/10.1149/1.3049820
  17. R. Forgie, G. Bugosh, KC. Neyerlin, Z. Liu and P. Strasser, Electrochem Solid-State Lett., 2010, 13(4), B36-B39. https://doi.org/10.1149/1.3290735
  18. L. Ma, S. Sui and Y. Zhai, J Power Sources., 2008, 177(2), 470-477. https://doi.org/10.1016/j.jpowsour.2007.11.106
  19. E. Ortel, T. Reier, P. Strasser, and R. Kraehnert, Chem Mater., 2011, 23(13), 3201-3209. https://doi.org/10.1021/cm200761f
  20. S. Sui, L. Ma and Y. Zhai, Asia Pac J Chem Eng., 2009, 4(1), 8-11. https://doi.org/10.1002/apj.183
  21. T. Nakagawa, CA. Beasley and RW. Murray, J Phys Chem C., 2009, 113(30), 12958-12961. https://doi.org/10.1021/jp9060076
  22. N. Danilovic, R. Subbaraman, KC. Chang, SH. Chang, Y. Kang, J. Snyder, AP. Paulikas, D. Strmcnik, YT. Kim, D. Myers, VR. Stamenkovic, and NM. Markovic, Angew Chem Intl Ed., 2014, 53(51), 14016-14021. https://doi.org/10.1002/anie.201406455
  23. HN. Nong, L. Gan, E. Willinger., D. Teschner and P. Strasser, Chem Sci., 2014, 5(8), 2955-2963. https://doi.org/10.1039/C4SC01065E
  24. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, HN. Nong, R. Schlogl, KJJ. Mayrhofer and P. Strsser, J Am Chem Soc., 2015, 137(40), 13031-13040. https://doi.org/10.1021/jacs.5b07788
  25. J. Feng, F. Lv, Y. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G-C. Wang and S. Guo. Adv Mater., 2017, 29(47), 1703798. https://doi.org/10.1002/adma.201703798
  26. HN. Nong, HS. Oh, T. Reier, E. Willinger, MG. Willinger, V. Petkov, D. Teschner and P. Strasser, Angew Chem Int Ed., 2015, 54(10), 2975-2979. https://doi.org/10.1002/anie.201411072
  27. C. Wang, Y. Sui, G. Xiao, X. Yang, Y. Wei, G. Zou and B. Zou, J Mater Chem A., 2015, 3(39), 19669-19673. https://doi.org/10.1039/C5TA05384F
  28. W. Hu, H. Zhong, W. Liang and S. Chen, ACS Appl Mater & Interfaces., 2014, 6(15), 12729-12736. https://doi.org/10.1021/am5027192
  29. Y. Pi, Q. Shao, P. Wang, J. Guo and X. Huang, Adv Funct Mater., 2017, 27(27), 1700886. https://doi.org/10.1002/adfm.201700886
  30. J. Hu, J. Zhang, H. Meng and C. Cao, J Mate Sci., 2003, 38(4), 705-712. https://doi.org/10.1023/A:1021840426997
  31. YT. Kim, PP. Lopes, SA. Park, AY. Lee, J. Lim, H. Lee, S. Back, Y. Jung, N. Danilovic, V. Stamenkovic, J. Erlebacher, J. Snyder and NM. Markovic, Nat Commun., 2017, 8(1), 1449. https://doi.org/10.1038/s41467-017-01734-7
  32. J. Erlebacher, MJ. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Nature, 2001, 410(6827), 450-453. https://doi.org/10.1038/35068529
  33. Y. Ding and J. Erlebacher, J Am Chem Soc., 2003, 125(26), 7772-7773. https://doi.org/10.1021/ja035318g
  34. E. Ozer, C. Spori, T. Reier and P. Strasser, ChemCatChem., 2017, 9(4), 597-603. https://doi.org/10.1002/cctc.201600423
  35. J. Juodkazytė, B. Sebeka, I. Valsiunas, K. Juodkazis, Electroanalysis, 2005, 17(11), 947-952. https://doi.org/10.1002/elan.200403200
  36. KA. Stoerzinger, L. Qiao, MD. Biegalski and Y. Shao-Horn, J Phys Chem Lett., 2014, 5(10), 1636-1641. https://doi.org/10.1021/jz500610u
  37. CCL. McCrory, S. Jung, JC. Peters and TF. Jaramillo, J Am Chem Soc., 2013, 135(45), 16977-16987. https://doi.org/10.1021/ja407115p