DOI QR코드

DOI QR Code

Time Series Forecasting on Car Accidents in Korea Using Auto-Regressive Integrated Moving Average Model

자동 회귀 통합 이동 평균 모델 적용을 통한 한국의 자동차 사고에 대한 시계열 예측

  • Received : 2019.11.19
  • Accepted : 2019.12.20
  • Published : 2019.12.28

Abstract

Recently, IITS (intelligent integrated transportation system) has been important topic in Smart City related industry. As a main objective of IITS, prevention of traffic jam (due to car accidents) has been attempted with help of advanced sensor and communication technologies. Studies show that car accident has certain correlation with some factors including characteristics of location, weather, driver's behavior, and time of day. We concentrate our study on observing auto correlativity of car accidents in terms of time of day. In this paper, we performed the ARIMA tests including ADF (augmented Dickey-Fuller) to check the three factors determining auto-regressive, stationarity, and lag order. Summary on forecasting of hourly car crash counts is presented, we show that the traffic accident data obtained in Korea can be applied to ARIMA model and present a result that traffic accidents in Korea have property of being recurrent daily basis.

최근 들어 IITS는 스마트 시티관련 산업계에서 중요한 주제로 떠오르고 있다. IITS의 주요 목적인 교통체증 (차량 사고에 기인한) 예방책들이 발전된 센서 및 통신 기술의 도움을 받아 다양하게 시도되었다. 관련 연구들에서는 자동차 사고와 사고 위치적 특성, 날씨, 운전자 행동, 시간 등 다양한 요인들과 상관 관계가 있음을 보여주고 있다. 우리 연구는 자동차 사고와 사고 발생 시간 사이의 상관관계에 주제를 집중했다. 본 논문에서는 ARIMA (Auto-Regressive Integrated Moving Average) 자동 회귀, 정상 및 지연 순서를 결정하는 세 가지 요소를 확인하기 위해 ADF (Augmented Dickey-Fuller)를 포함한 ARIMA 테스트를 수행했다. 본 연구 결과로서 시간 별 자동차 충돌 수 예측에 대한 요약을 제시하며, 한국 내 자동차 사고 데이터는 ARIMA 모델에 적용될 수 있음을 보여주었고, 국내 자동차 사고는 하루를 기준으로 일정한 주기가 존재하는 성격을 가지고 있다는 것을 제시했다.

Keywords

References

  1. D. P. Percival & A. T. Walden. (1998). Spectral Analysis for Physical Applications. Cambridge University Press.
  2. S. Theodoridis. (2015). A Bayesian and Optimization Perspective. Academic Press, 9,-51.
  3. F. Kadri, F. Harrou, S. Chaabane, Y. Sun & C. Tahon. (2016). Seasonal ARMA-based SPC charts for anomaly detection: Application to emergency department systems. Neurocomputing, 173, 2102-2114. https://doi.org/10.1016/j.neucom.2015.10.009
  4. B. Soren. & M. Kulahci. (2011). Time Series Analysis and Forecasting by Example. Hoboken, N.J.: Wiley.
  5. C. Cheng et al. (2015). Time series forecasting for nonlinear and non-stationary processes: a review and comparative study. Iie Transactions, 47(10), 1053-1071. https://doi.org/10.1080/0740817X.2014.999180
  6. M. Li & J.Y. Li. (2010). On the predictability of long-range dependent series. Mathematical Problems in Engineering
  7. M. Shukla & S. Jharkharia. (2013). Applicability of ARIMA models in wholesale vegetable market: an investigation. International Journal of Information Systems and Supply Chain Management (IJISSCM), 6(3), 105-119. https://doi.org/10.4018/ijisscm.2013070105
  8. J. G. De Gooijer & R. J. Hyndman. (2006). 25 years of time series forecasting. International journal of forecasting, 22(3), 443-473. https://doi.org/10.1016/j.ijforecast.2006.01.001
  9. C. Voyant, M. Muselli, C. Paoli & M. L. Nivet. (2012). Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation. Energy, 39(1), 341-355. https://doi.org/10.1016/j.energy.2012.01.006
  10. M. Lydia, S. S. Kumar, A. I. Selvakumar & G. E. P. Kumar. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy conversion and management, 112, 115-124. https://doi.org/10.1016/j.enconman.2016.01.007
  11. H. O. Stekler. (2007). The future of macroeconomic forecasting: Understanding the forecasting process. International Journal of Forecasting, 23(2), 237-248. https://doi.org/10.1016/j.ijforecast.2007.01.002
  12. M. Theodosiou. (2011). Forecasting monthly and quarterly time series using STL decomposition. International Journal of Forecasting, 27(4), 1178-1195. https://doi.org/10.1016/j.ijforecast.2010.11.002
  13. R. J. Hyndman & Y. Khandakar. (2008). Automatic time series forecasting: The forecast package for R, Journal of Statistical Software, 26(3).
  14. F. Hadi & G. Joao. (2013). Event labeling combining ensemble detectors and background knowledge, Progress in Artificial Intelligence, 1-15.
  15. C. C. Ihueze & U. O. Onwurah. (2018). Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria. Accident Analysis & Prevention, 112, 21-29. https://doi.org/10.1016/j.aap.2017.12.016
  16. T. Ma, Z. Zhou & C. Antoniou. (2018). Dynamic factor model for network traffic state forecast. Transportation Research Part B: Methodological, 118, 281-317. https://doi.org/10.1016/j.trb.2018.10.018