• 제목/요약/키워드: 확률 론적 고정 시계열

검색결과 1건 처리시간 0.014초

자동 회귀 통합 이동 평균 모델 적용을 통한 한국의 자동차 사고에 대한 시계열 예측 (Time Series Forecasting on Car Accidents in Korea Using Auto-Regressive Integrated Moving Average Model)

  • 신현경
    • 융합정보논문지
    • /
    • 제9권12호
    • /
    • pp.54-61
    • /
    • 2019
  • 최근 들어 IITS는 스마트 시티관련 산업계에서 중요한 주제로 떠오르고 있다. IITS의 주요 목적인 교통체증 (차량 사고에 기인한) 예방책들이 발전된 센서 및 통신 기술의 도움을 받아 다양하게 시도되었다. 관련 연구들에서는 자동차 사고와 사고 위치적 특성, 날씨, 운전자 행동, 시간 등 다양한 요인들과 상관 관계가 있음을 보여주고 있다. 우리 연구는 자동차 사고와 사고 발생 시간 사이의 상관관계에 주제를 집중했다. 본 논문에서는 ARIMA (Auto-Regressive Integrated Moving Average) 자동 회귀, 정상 및 지연 순서를 결정하는 세 가지 요소를 확인하기 위해 ADF (Augmented Dickey-Fuller)를 포함한 ARIMA 테스트를 수행했다. 본 연구 결과로서 시간 별 자동차 충돌 수 예측에 대한 요약을 제시하며, 한국 내 자동차 사고 데이터는 ARIMA 모델에 적용될 수 있음을 보여주었고, 국내 자동차 사고는 하루를 기준으로 일정한 주기가 존재하는 성격을 가지고 있다는 것을 제시했다.