참고문헌
- Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65(6), 635-648. https://doi.org/10.1007/s00253-004-1647-x
- Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101(2), 87-96. https://doi.org/10.1263/jbb.101.87
- Abdel-Raouf, N., Al-Homaidan, A. A. and Ibraheem, I. B. M. 2012. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19(3), 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005
- Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V. and Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World J. Microb. Biotechnol. 27(8), 1737-1746. https://doi.org/10.1007/s11274-010-0632-z
- Metting, B. 1990. Microalgae applications in agriculture. Dev. Ind. Microbiol. 31, 265-270.
- Wijffels, R. H., Kruse, O. and Hellingwerf, K. J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaaryotic microalgae. Curr. Opin. Biotech. 24(3), 405-413. https://doi.org/10.1016/j.copbio.2013.04.004
- Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J. S., Jin, E. and Bae, S. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6, 30620. https://doi.org/10.1038/srep30620
- Baek, K., Yu, J., Jeong, J., Sim, S. J., Bae, S. and Jin, E. 2018. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol. Bioeng. 115(3), 719-728. https://doi.org/10.1002/bit.26499
- Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W. S., Lee, B., Hwangbo, K. and Kim, J. 2016. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 6, 27810. https://doi.org/10.1038/srep27810
- Tran, Q. G., Cho, K., Park, S. B., Kim, U., Lee, Y. J. and Kim, H. S. 2019a. Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in Chlamydomonas reinhardtii. Sci. Rep. 9(1), 1-9. https://doi.org/10.1038/s41598-018-37186-2
-
Tran, Q. G., Cho, K., Kim, U., Yun, J. H., Cho, D. H., Heo, J., Park, S. B., Kim, J. W., Lee, Y. J., Ramanan, R. and Kim, H. S. 2019b. Enhancement of
${\beta}$ -carotene production by regulating the autophagy-carotenoid biosynthesis seesaw in Chlamydomonas reinhardtii. Bioresour. Technol. 292, 121937. https://doi.org/10.1016/j.biortech.2019.121937 - Hamilton, M. L., Haslam, R. P., Napier, J. A. and Sayanova, O. 2014. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab. Eng. 22, 3-9. https://doi.org/10.1016/j.ymben.2013.12.003
- Leon, R., Couso, I. and Fernandez, E. 2007. Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J. Biotechnol. 130(2), 143-152. https://doi.org/10.1016/j.jbiotec.2007.03.005
- Beacham, T. A., Sweet, J. B. and Allen, M. J. 2017. Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. Algal Res. 25, 90-100. https://doi.org/10.1016/j.algal.2017.04.028
- Glass, D. J. 2015. Government regulation of the uses of genetically modified algae and other microorganisms in biofuel and bio-based chemical production. In Algal Biorefineries. Springer, Cham, pp 23-60
- Kumar, S. 2015. GM algae for biofuel production: biosafety and risk assessment. Collect. Biosaf. Rev. 9, 52-75.
- Szyjka, S. J., Mandal, S., Schoepp, N. G., Tyler, B. M., Yohn, C. B., Poon, Y. S., Villareal, S., Burkart, M. D., Shurin, J. B. and Mayfield, S. P. 2017. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res. 24, 378-386. https://doi.org/10.1016/j.algal.2017.04.006
- Hwang, H. J., Kim, Y. T., Kang, N. S. and Han, J. W. 2018. A Simple Method for Removal of the Chlamydomonas reinhardtii Cell Wall Using a Commercially Available Subtilisin (Alcalase). J. Mol. Microbiol. Biotechnol. 28(4), 169-178. https://doi.org/10.1159/000495183
- Ladygin, V. G. and Boutanaev, A. M. 2002. Transformation of Chlamydomonas reinhardtii CW-15 with the hygromycin phosphotransferase gene as a selectable marker. Russian. J. Genet. 38(9), 1009-1014. https://doi.org/10.1023/A:1020279429009
- Wittkopp, T. M. 2018. Nuclear Transformation of Chlamydomonas reinhardtii by Electroporation. Bio-protocol. 8(9).
- Dunahay, T. G. 1993. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques, 15(3), 452-5.
- EL-Sheekh, M. M., Almutairi, A. W. and Touliabah, H. E. 2019. Construction of a novel vector for the nuclear transformation of the unicellular green alga Chlamydomonas reinhardtii and its stable expression. J. Taibah University Sci. 13(1), 529-535. https://doi.org/10.1080/16583655.2019.1603574
- Kumar, S. V., Misquitta, R. W., Reddy, V. S., Rao, B. J. and Rajam, M. V. 2004. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 166(3), 731-738. https://doi.org/10.1016/j.plantsci.2003.11.012
- Talebi, A. F., Tohidfar, M., Tabatabaei, M., Bagheri, A., Mohsenpor, M. and Mohtashami, S. K. 2013. Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol. Biol. Rep. 40(7), 4421-4428. https://doi.org/10.1007/s11033-013-2532-4
- Chow, K. C. and Tung, W. L. 1999. Electrotransformation of Chlorella vulgaris. Plant Cell. Rep. 18(9), 778-780. https://doi.org/10.1007/s002990050660
- Liu, L., Wang, Y., Zhang, Y., Chen, X., Zhang, P. and Ma, S. 2013. Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol. Biotechnol. 54(2), 211-219. https://doi.org/10.1007/s12033-012-9554-3
- Steinbrenner, J. and Sandmann, G. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72(12), 7477-7484. https://doi.org/10.1128/AEM.01461-06
- Apt, K. E., Grossman, A. R. and Kroth-Pancic, P. G. 1996. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet. 252(5), 572-579.
- Dunahay, T. G., Jarvis, E. E. and Roessler, P. G. 1995. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 31(6), 1004-1012. https://doi.org/10.1111/j.0022-3646.1995.01004.x
- Poulsen, N., Chesley, P. M. and Kroger, N. 2006. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae) 1. J. Phycol. 42(5), 1059-1065. https://doi.org/10.1111/j.1529-8817.2006.00269.x
- Te, M. R. and Miller, D. J. 1998. Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J. 13(3), 427-435. https://doi.org/10.1046/j.1365-313X.1998.00040.x
- Shin, W. S. 2018. Genetic modulation of light-harvesting complex in chlorella to improve photosynthetic efficiency and biomass productivity, Ph. D. Thesis in Korea Advanced Science and Technology (KAIST), Korea
- Jeong, C. B., Lee, Y. H., Park, J. C., Kang, H. M., Hagiwara, A. and Lee, J. S. 2019. Effects of metal-polluted seawater on life parameters and the induction of oxidative stress in the marine rotifer Brachionus koreanus. Comp. Biochem. Physiol. C. 225, 108576.
- Romero-Freire, A., Joonas, E., Muna, M., Cossu-Leguille, C., Vignati, D. A. L. and Giamberini, L. 2019. Assessment of the toxic effects of mixtures of three lanthanides (Ce, Gd, Lu) to aquatic biota. Sci. Total Environ. 661, 276-284. https://doi.org/10.1016/j.scitotenv.2019.01.155
- Saavedra, J., Stoll, S. and Slaveykova, V. I. 2019. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 252, 715-722. https://doi.org/10.1016/j.envpol.2019.05.135
- Bhatti, F., Asad, S., Khan, Q. M., Mobeen, A., Iqbal, M. J. and Asif, M. 2019. Risk assessment of genetically modified sugarcane expressing AVP1 gene. Food Chem. Toxicol. 130, 267-275. https://doi.org/10.1016/j.fct.2019.05.034
- Bertoni, G. and Marsan, P. A. 2005. Safety risks for animals fed genetic modified (GM) plants. Vetres. Commun. 29(2), 13-18.
- Domingo, J.L. 2007. Toxicity studies of genetically modified plants: a review of the published literature. Crit. Rev. Food. Sci. 47(8), 721-733. https://doi.org/10.1080/10408390601177670
- Seralini, G. E., Cellier, D. and de Vendomois, J. S. 2007. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch. Environ. Con. Tox. 52(4), 596-602. https://doi.org/10.1007/s00244-006-0149-5
- Gasson, M. J. 2000. Gene transfer from genetically modified food. Curr. Opin. Biotech. 11(5), 505-508. https://doi.org/10.1016/S0958-1669(00)00136-1
- Thomson, J. A. 2001. Horizontal transfer of DNA from GM crops to bacteria and to mammalian cells. J. Food Sci. 66(2), 188-193. https://doi.org/10.1111/j.1365-2621.2001.tb11314.x