DOI QR코드

DOI QR Code

Nutritional Properties by Composting Process of Algae Biomass as Soil Conditioner

조류 바이오매스를 이용한 토양개량제의 퇴비화 과정에 따른 영양성분 특성

  • Ahn, Chang-Hyuk (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Saeromi (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Jae-Roh (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 안창혁 (한국건설기술연구원 국토보전연구본부) ;
  • 이새로미 (한국건설기술연구원 국토보전연구본부) ;
  • 박재로 (한국건설기술연구원 국토보전연구본부)
  • Received : 2019.10.01
  • Accepted : 2019.10.30
  • Published : 2019.12.31

Abstract

In this study, we produce a new type of the algae soil conditioner(ASC) using discarded algae biomass through a composting process and evaluate its nutritional characteristics. As the main ingredient, the ASCs used algae biomass collected through the coagulation-floating method and made by adding a variety of additional supporting materials (sawdust, pearlite, oilcake etc.). ASCs were divided into 0% in blank, 11.7% in ASC1, 21.6% in ASC2, 37.6% in ASC3, 59.5% in ASC4, and composted during 127 days. ASCs showed a sharp increase in temperature by aerobic microbial reaction, and 6~7 high and low temperature peaks were observed. As a result of physicochemical analysis, mineralization proceeded according to decomposing the organic matter and there was a marked increase not only in macronutrients (TN, P2O5, K2O), but also in secondary macronutrients (CaO, MgO). The microbial community change was found in stage 1 (bacteria, filamentous fungi) → stage 2 (actinomycetes, bacteria) → stage 3 (Bacillus sp.), depending on the maturation process. It was estimated that microbial transition was closely related to temperature change and nutritional behavior. The quality of soil conditioner can be determined according to the maturity of compost process, and it was determined that effective microbial activity could be induced by controlling algae biomass below 59.5% in this study. In conclusion, we found out the possibility of manufacturing and utilizing soil conditioner recycled algae biomass and if further technological development is made on the basis it can be used as an effective soil conditioner.

본 연구에서는 폐기되는 조류 바이오매스를 재활용하여 퇴비화 과정을 통해 새로운 형태의 조류토양개량제(algae soil conditioner, ASC)로 제조하고 영양성분에 대한 특성을 평가하였다. ASCs는 응집부상공법을 통해 수집된 조류 바이오매스를 주원료로 하였으며 추가적으로 다양한 보조 원료(톱밥, 펄라이트, 깻묵 등)를 첨가하여 제조하였다. ASCs는 투입된 조류 바이오매스 질량 비율에 따라 각각 blank 0%, ASC1 11.7%, ASC2 21.6%, ASC3 37.6%, ASC4 59.5%로 구분하여 총 127일간 부숙하였다. ASCs는 호기성 미생물 반응에 의해 온도 증감이 뚜렷하게 나타났으며 6~7회의 크고 작은 온도 피크가 관찰되었다. 이화학 분석결과 유기물이 무기화(mineralization) 되면서 macronutrients (TN, P2O5, K2O) 뿐만 아니라 secondary macronutrients (CaO, MgO)에서도 두드러진 증가를 보였다. 미생물 군집변화는 ASCs의 부숙과정에 따라 1단계(세균, 사상균)→2단계(방선균, 세균)→3단계(고초균)로 나타났으며 온도변화와 영양성분의 거동과 밀접한 관련이 있다고 판단되었다. 부숙 완성도에 따라 토양개량제의 품질이 결정될 수 있으며 본 연구결과에서는 조류 바이오매스를 59.5% 이내로 조절한다면 효과적인 미생물 활성을 유도할 수 있을 것으로 판단되었다. 결론적으로 조류 바이오매스를 재활용한 토양개량제의 제조 및 활용 가능성을 확인하였으며 추가적인 기술적 발전이 이루어진다면 향후 효과적인 토양개량제로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Adeniyi OM, Azimov U, Burluka A. 2018. Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews. 90: 316-335. https://doi.org/10.1016/j.rser.2018.03.067
  2. AGHTM (Association Generale des Hygienistes Techniciens Municipaux). 1985. Residus Urbains. 2nd edition. Technique et Documentation. AGHTM. Paris, France. p. 437.
  3. Banegas V, Moreno JL, Moreno JI, Garcia C, Leon G, Hernandez T. Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Management. 27: 1317-1327. https://doi.org/10.1016/j.wasman.2006.09.008
  4. Basak B, Biswas DR. 2009. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers) grown under two Alfisols. Plant Soil 317. p. 235-255. https://doi.org/10.1007/s11104-008-9805-z
  5. Castro HE, Gomez MI. 2010. Fertilidad de suelos y fertilizantes. In: Burbano, H. Silva, F. (Eds.), Ciencia del Suelo. Sociedad Colombiana de la Ciencia del Suelo, Bogota. p. 217-303.
  6. European Commission. 2001. working document: biological treatment of biowaste, 2nd draft. 2.
  7. Han W. Clarke W, Pratt S. 2014. Composting of waste algae: A review. Waste Management. 34: 1148-1155. https://doi.org/10.1016/j.wasman.2014.01.019
  8. Harper ER, Miller FC, Macauley BJ. 1992. Physical management and interpretation of an environmentally controlled composting ecosystem. Aust J Exp Agric. 32(5): 657-667. https://doi.org/10.1071/EA9920657
  9. Jung H, Kim J, Seo J, Lee S. 2010. Physicochemical and antioxidant properties of red ginseng marc fermented by Bacillus subtilis HA with mugwort powder addition. J Korean Soc Food Sci Nutr. 39(9): 1391-1398. https://doi.org/10.3746/jkfn.2010.39.9.1391
  10. Kim KY, Choi HL, Ko HJ, Kim CN. 2006. Estimation of ammonia emission during composting livestock manure based on the degree of compost maturity. J Anim Sci. & Technol. 48(1): 123-130. https://doi.org/10.5187/JAST.2006.48.1.123
  11. Kumari R, Kaur I, Bhatnagar AK. Enhancing soil health and productivity of Lycopersicon esculentum Mill. using Sargassum johnstonii Setchell & Gardner as a soil conditioner and fertilizer. J Appl Phycol. 25: 1225-1235. https://doi.org/10.1007/s10811-012-9933-y
  12. Kuznetsov PI, Novikov AE. 2010. Effect of soil conditioners on water permeability and water-holding capacity of light chestnut soils. Russian Agricultural Sciences. 36(4): 279-281. https://doi.org/10.3103/S1068367410040154
  13. Michalak I, Chojnacka K, Saeid A. 2017. Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical $CO_2$ algal extracts. Molecules. 22(66): 1-17.
  14. Miller FC and Macauley BJ. 1989. Substrate usage and odours in mushroom composting. Aust J Exp Agric. 29: 119-124. https://doi.org/10.1071/EA9890119
  15. Nam JJ, Cho N, J K, Lee S. 2012. Conversion factor for determinating carbon contents from organic matter contents in composts by ignition method. J Korean Soc Soil Sci Fert. 31(4): 380-383.
  16. Pepe O, Ventorino V, Bliotta G. 2013. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living ($N_2$)-fixing bacteria application. Waste Manage. 33: 1616-1625. https://doi.org/10.1016/j.wasman.2013.03.025
  17. Phae C, Sasaki M, Shoda M, Kubota H. 1990. Characteristics of Bacillus subtilis isolated from composts suppressing phytopathogenic microorganisms. Soil Sci Plant Nutr. 36(4): 575-586. https://doi.org/10.1080/00380768.1990.10416794
  18. Poincelot RP. 1974. A scientific examination of the principle and practice of composting. Compost Sci. 15: 24-31.
  19. Rural Development Administration (RDA). 2012. Research survey analysis standard of agricultural science and technology, 5th edition. Rural Development Administration, Suwon, Gyeonggi Province, Republic of Korea. p. 1135.
  20. Rural Development Administration (RDA). 2017. Production and use of compost, Rural Development Administration, Jeonju, Jeollabuk Province, Republic of Korea. p. 145.
  21. Sanchez OJ, Ospina DA, Montoya S. 2017. Compost supplementation with nutrients and microorganisms in composting process. Waste Management. 69: 136-153. https://doi.org/10.1016/j.wasman.2017.08.012
  22. Tambone F, Confalonieri R, Adani F. 2004. Dynamic respiration index as a descriptor of the biological stability of wastes. J Environ Qual. 33: 1866-1876. https://doi.org/10.2134/jeq2004.1866
  23. Tuomela M, Vikman M, Hatakka A, Itavaara M. 2000. Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 72: 169-183. https://doi.org/10.1016/S0960-8524(99)00104-2
  24. Yang I, Ji M, Jeon B. 2017. A review on efficient operation technology of compost depot. Clean Technol. 23(4): 345-356. https://doi.org/10.7464/KSCT.2017.23.4.345
  25. Zhu N. 2007. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresour Technol. 98: 9-13. https://doi.org/10.1016/j.biortech.2005.12.003
  26. Zwietering MH, De Koos JT, Hasenack BE, De Wit JC, Riet K. 1991. Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology. 57(4): 1094-1101. https://doi.org/10.1128/AEM.57.4.1094-1101.1991