DOI QR코드

DOI QR Code

An Analysis of the Correlation between Seoul's Monthly Particulate Matter Concentrations and Surrounding Land Cover Categories

서울시 월별 미세먼지 농도와 주변 토지피복의 관계 분석

  • 최태영 (국립생태원 생태평가연구실) ;
  • 강다인 (국립생태원 생태평가연구실) ;
  • 차재규 (국립생태원 생태평가연구실)
  • Received : 2019.10.04
  • Accepted : 2019.11.13
  • Published : 2019.12.31

Abstract

The present study aims to identify the effect of land cover categories on particulate matter (PM) concentrations by analyzing the correlation between monthly PM concentrations in Seoul's air quality monitoring network and the percentages of land cover categories by buffers around air quality monitoring stations. According to a monthly correlation analysis between land cover categories and PM concentrations, in the buffer 3km, PM10 showed a better correlation than PM2.5, there was a clear negative correlation with the forest area, the grassland and the urbanized area had some positive correlation with PM10, and the barren land and the urbanized area had some positive correlation with PM2.5. According to a monthly correlation analysis of dominant land cover sub-categories and sub-sub-categories within the buffer 3km, PM10 showed a clear negative correlation with the broad-leaved forest, and some positive correlation with the road was dominant. PM2.5 showed partly negative correlation with the broad-leaved forest and partly positive correlation with the commercial area. There was a very low or no correlation with other grassland and bare land subcategories. A monthly stepwise regression analysis on noticeable land cover sub-categories and sub-sub-categories with positive or negative correlations revealed that an increasing percentage of the broad-leaved forest had a clear effect on reducing PM10 concentrations, and the road was excluded from the selected variables. Although an increasing percentage of the commercial area had some effect on increasing monthly PM2.5 concentrations and an increasing percentage of the broad-leaved forest had an effect on decreasing the PM2.5 concentrations, their effect size was smaller than that on PM10. The forest area around the city center had the largest and clearest effect on reducing PM concentrations. The urbanized area's sub-categories and sub-sub-categories were also confirmed to have some effect on increasing PM concentrations.

연구는 서울시 도시대기 측정망의 월별 미세먼지 농도와 측정소 주변 버퍼별, 토지피복 유형별 비율의 관계를 분석하여 미세먼지 농도에 대한 토지피복의 영향을 규명하고자 하였다. 대분류 토지피복 유형과 미세먼지 농도의 월별 상관분석 결과 버퍼 3km에서, PM2.5보다 PM10에서 상관성이 잘 나타났고, 산림과 뚜렷한 음의 상관관계, 초지와 시가지는 PM10과, 나지와 시가지는 PM2.5와 일부 양의 상관관계를 나타냈다. 버퍼 3km 내 중분류 및 세분류 우세 피복유형의 월별 상관분석 결과 PM10은 활엽수림과 뚜렷한 음의 상관관계를 나타냈고, 도로와 일부 양의 상관이 우세한 편이었다. PM2.5는 활엽수림과 일부 음의 상관, 상업지역과 일부 양의 상관이 많은 편이었다. 그 밖에 초지 및 나지 세부 유형의 상관성은 매우 낮거나 없었다. 양의 상관 및 음의 상관관계의 각 대표 피복유형으로 단계선택법에 의한 월별 회귀분석을 실시한 결과 PM10은 활엽수림 비율 증가에 의한 농도 감소 영향이 뚜렷하였고, 도로는 변수선택에서 제거되었다. PM2.5는 일부 월별로 상업지역 비율 증가에 따른 농도 증가 영향 또는 활엽수림 비율 증가에 따른 농도 감소 영향을 받았지만, 그 영향력은 PM10에 비해 낮았다. 연구결과 측정소 주변 토지피복은 미세먼지 농도 증감에 영향을 주었고, 그 영향은 PM10에서 더 분명하였다. 산림 유형은 미세먼지 농도에 가장 크고, 분명한 영향을 주는 저감 요인이었다. 시가화지역 관련 유형들의 농도 증가 영향은 일부 확인되었다. 도심 산림의 미세먼지 저감 기능은 분명한 효과를 가진 것으로 보이며, 향후 녹지의 세부 특성과 복잡한 도시환경 요인의 작용을 규명하는 후속 연구가 필요하였다.

Keywords

References

  1. Abhijith KV, Kumar P, Gallagher J, McNabola A, Baldauf R, Pilla F, Pulvirenti B. 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments-A review. Atmos. Environ. 162: 71-86. https://doi.org/10.1016/j.atmosenv.2017.05.014
  2. Bae HJ. 2014. Effects of short-term exposure to $PM_{10}$ and $PM_{2.5}$ on mortality in Seoul. J. Environ. Health. 40(5): 346-354. [Korean Literature]
  3. Brantley HL, Hagler GS, Deshmukh PJ, Baldauf RW. 2014. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. of the Total Environ. 468: 120-129. https://doi.org/10.1016/j.scitotenv.2013.08.001
  4. Cai M, Xin Z, Yu X. 2017. Spatio-temporal variations in PM leaf deposition: A meta-analysis. Environ. Pollut. 231: 207-218. https://doi.org/10.1016/j.envpol.2017.07.105
  5. Cavanagh JE, Zawar-Reza P, Gaines Wilson J. 2009. Spatial attenuation of ambient particulate matter air pollution within an urbanized native forest patch. urban for. urban green. 8(1): 21-30. https://doi.org/10.1016/j.ufug.2008.10.002
  6. Chae HJ. 2009. Effect on the $PM_{10}$ Concentration by Wind Velocity and Wind Direction. J. Environ. Sanit. Eng. 24(3): 37-54. [Korean Literature]
  7. Chen J, Yu X, Sun F, Lun X, Fu Y, Jia G, Zhang Z, Liu X, Mo L, Bi H. 2015. The concentrations and reduction of airborne particulate matter ($PM_{10}$, $PM_{2.5}$, PM1) at shelterbelt site in Beijing. Atmosphere. 6: 650-676. https://doi.org/10.3390/atmos6050650
  8. Choi TY, Moon HG, Kang DI, Cha JG. 2018. Analysis of the Seasonal Concentration Differences of Particulate Matter According to Land Cover of Seoul: Focusing on Forest and Urbanized Area. Journal of Environmental Impact Assessment. 27(6): 635-646. [Korean Literature] https://doi.org/10.14249/EIA.2018.27.6.635
  9. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. 1993. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 329(24): 1753-1759. 1753-1759. https://doi.org/10.1056/NEJM199312093292401
  10. Fan S, Li X, Han J, Cao Y, Dong L. 2017. Field assessment of the impacts of landscape structure on different-sized airborne particles in residential areas of Beijing. China. Atmos. Environ. 166: 192-203. https://doi.org/10.1016/j.atmosenv.2017.07.026
  11. Hatakeyama S, Takami A, Sakamaki F, Mukai H, Sugimoto N, Shimizu A, Bandow H. 2004. Aerial measurement of air pollutants and aerosols during 20-22 March 2001 over the East China Sea. J. Geophys. Res. Atmospheres. 109: D13.
  12. Heo JB, Hopke PK, Yi SM. 2009. Source apportionment of $PM_{2.5}$ in Seoul, Korea. Atmos. Chem. Phys. 9(14): 4957-4971. https://doi.org/10.5194/acp-9-4957-2009
  13. Hitchins J, Morawska L, Wolff R, Gilbert D. 2000. Concentrations of submicrometre particles from vehicle emissions near a major road. Atmos. environ.. 34(1): 51-59. https://doi.org/10.1016/S1352-2310(99)00304-0
  14. Hoek G, Beelen R, De Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D. 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. environ. 42(33): 7561-7578. https://doi.org/10.1016/j.atmosenv.2008.05.057
  15. Hong SH and Lee SH. 2017. Characteristic of PM10 Distribution Related to Precise Local Wind Patterns in Busan Metropolitan Area. Journal of Environmental Science International. 26(12): 1375-1387. [Korean Literature] https://doi.org/10.5322/JESI.2017.26.12.1375
  16. Jin S, Guo J, Wheeler S, Kan L, Che S. 2014. Evaluation of impacts of trees on $PM_{2.5}$ dispersion in urban streets. Atmos. Environ., 99: 277-287. https://doi.org/10.1016/j.atmosenv.2014.10.002
  17. Jonsson P, Bennet C, Eliasson I, Lindgren ES. 2004. Suspended particulate matter and its relations to the urban climate in Dar es Salaam. Tanzania. Atmos. Environ. 38: 4175-4181. https://doi.org/10.1016/j.atmosenv.2004.04.021
  18. K-eco. 2018. Air korea. Available from: https://www.airkorea.or.kr/
  19. Kim YP. 2017. Research and Policy Directions against Ambient Fine Particles. J. Korean Soc. Atmos. Environ. 33(3): 191-204. [Korean Literature] https://doi.org/10.5572/KOSAE.2017.33.3.191
  20. Nguyen T, Yu XX, Zhang ZM, Liu MM, Liu XH. 2015. Relationship between types of urban forest and $PM_{2.5}$ capture at three growth stages of leaves. J. Environ. Sci. 27: 33-41. https://doi.org/10.1016/j.jes.2014.04.019
  21. NIER (National Institute of Environmental Research). 2016. Annual report of air quality in Korea 2015. National Institute of Environmental Research. 1-362. [Korean Literature]
  22. Nowak DJ, McHale PJ, Ibarra M, Crane D, Stevens J, Luley C. 1998. Modeling the effects of urban vegetation on air pollution. Air pollution modeling and its application XII. Springer. Boston. MA. 399-407.
  23. Nowak DJ, Crane DE and Stevens JC. 2006. Air pollution removal by urbantrees and shrubs in the United States. Urban Forestry & Urban Greening. 4: 115-123. https://doi.org/10.1016/j.ufug.2006.01.007
  24. Park JK, Choi YJ and Jung WS. 2015. An analysis on the distribution characteristics of PM10 concentration and its relation to the death from Asthma in Seoul, Korea. J. Environ. Sci. Int., 24(7): 961-968. [Korean Literature] https://doi.org/10.5322/JESI.2015.24.7.961
  25. Park CS. 2017. Variations of $PM_{10}$ concentration in Seoul during 2015 and relationships to weather condition. J. Photo Geogr. 27(2): 47-64. [Korean Literature]
  26. Park SY, Kim YJ, Kim CH. 2012. Characteristics of Long-Range Transport of Air Pollutants due to Different Transport Patterns over Northeast Asia. J. KOSAE. 28(2): 142-158. [Korean Literature] https://doi.org/10.5572/KOSAE.2012.28.2.142
  27. Reponen T, Grinshpun SA, Trakumas S, Martuzevicius D, Wang ZM, LeMasters G, Biswas P. 2003. Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinnati airshed. J. of environ. monit. 5(4): 557-562. https://doi.org/10.1039/b303557c
  28. Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW. 2012. Plant species differences in particulate matter accumulation on leaf surfaces, Sci. Total Environ. 427: 347-354. https://doi.org/10.1016/j.scitotenv.2012.03.084
  29. Schwartz J, Dockery DW, Neas LM. 1996. Is daily mortality associated specifically with fine particles J. Air Waste Manage. Assoc. 46(10): 927-939. https://doi.org/10.1080/10473289.1996.10467528
  30. Wallace LA, Wang FB, Howard-Reed C, Persily A. 2008. Contribution of Gas and Electric Stoves to Residential Ultrafine Particle Concentrations between 2 nm and 64 nm: Size Distributions and Emission and Coagulation Rates, Environ. Sci. & Tech. 42(23): 8641-8647. https://doi.org/10.1021/es801402v
  31. Weng Q, Yang S. 2006. Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS. Environ. Monit. Assess. 117: 463-489. https://doi.org/10.1007/s10661-006-0888-9
  32. Wu CD, Chen YC, Pan WC, Zeng YT, Chen MJ, Guo YL, Lung SCC. 2017. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model $PM_{2.5}$ spatial-temporal variability. Environ. Pollut. 224: 148-157. https://doi.org/10.1016/j.envpol.2017.01.074
  33. Xing YF, Xu YH, Shi MH, Lian YX. 2016. The impact of $PM_{2.5}$ on the human respiratory system. J. Thoracic Dis. 8(1): E69-E74.
  34. Yin S, Shen Z, Zhou P, Zou X, Che S, Wang W. 2011. Quantifying air pollution attenuation within urban parks: an experimental approach in Shanghai, China. Environ. Pollut. 159: 2155-2163. https://doi.org/10.1016/j.envpol.2011.03.009