Acknowledgement
Supported by : University of Western Australia
The authors wish to thank James Ballard, Jim Waters, Brad Rose and Michael Pederson for the help they extended towards conducting the experimental programme. The first and second authors also wish to acknowledge that their research work is supported by the Australian Government Research Training Program (RTP) scholarships. The work described in this paper was financially supported by the University of Western Australia.
References
- Abendeh, R., Ahmad, H.S. and Hunaiti, Y.M. (2016), "Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber", J. Constr. Steel Res., 122, 251-260. https://doi.org/10.1016/j.jcsr.2016.03.022
- Alfawakhiri, F. (1997), Behavior of High-strength Concrete-filled Circular Steel Tube Beam-columns, University of Ottawa Ann Arbor.
- Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010), "Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Constr. Steel Res., 66(1), 11-18. https://doi.org/10.1016/j.jcsr.2009.08.002
- American Institute of Steel Construction (2016), ANSI/AISC 360-16.
- Architectural Institute of Japan (AIJ) (2001), Standard for Structural Calculation of Steel Reinforced Concrete Structures.
- Chen, B.-C. and Chen, J.-K. (2016), "Experimental studies on shear-bearing capacity of headed stud in concrete-filled steel tube", Gongcheng Lixue/Engineering Mechanics, 33(2), 66-73.
- Chen, Z., Xu, J., Xue, J. and Su, Y. (2013), "Push-out test on the interface bond-slip behavior and calculation on bond strength between steel tube and recycled aggregate concrete in RACFST structures", Tumu Gongcheng Xuebao/China Civil Engineering Journal, 46(3), 49-58.
- Chen, Y., Feng, R., Shao, Y. and Zhang, X. (2017), "Bond-slip behaviour of concrete-filled stainless steel circular hollow section tubes", J. Constr. Steel Res., 130, 248-263. https://doi.org/10.1016/j.jcsr.2016.12.012
- Ding, Q.-J., Zhou, X.-J., Mou, T.-M., Fan, B.-K. and Yan, Y.-L. (2013), "Bond properties at interface of steel fiber reinforced micro-expansion concrete filled steel tube", Gongneng Cailiao/Journal of Functional Materials, 44(6), 809-813.
- EN 1994-1-1:2004 (2004), Eurocode 4: Design of composite steel and concrete structures, Part 1.1, General rules and rules for buildings.
- Fu, Z.Q., Ge, H.B., Ji, B.H. and Chen, J.J. (2018), "Interface bond behaviour between circular steel tube and lightweight aggregate concrete", Adv. Steel Constr., 14(3), 424-437.
- Grzeszykowski, B., Szadkowska, M. and Szmigiera, E. (2017), "Analysis of stress in steel and concrete in CFST push-out test samples", Civil Environ. Eng. Reports, 26(3), 145-159. https://doi.org/10.1515/ceer-2017-0042
- Guan, M., Lai, Z., Xiao, Q., Du, H. and Zhang, K. (2019), "Bond behavior of concrete-filled steel tube columns using manufactured sand (MS-CFT)", Eng. Struct., 187, 199-208. https://doi.org/10.1016/j.engstruct.2019.02.054
- Gunawardena, Y. and Aslani, F. (2018), "Behaviour and design of concrete-filled mild-steel spiral welded tube short columns under eccentric axial compression loading", J. Constr. Steel Res., 151, 146-173. https://doi.org/10.1016/j.jcsr.2018.09.018
- Gunawardena, Y. and Aslani, F. (2019a), "Behaviour and design of concrete-filled spiral-welded stainless-steel tube short columns under concentric and eccentric axial compression loading", J. Constr. Steel Res., 158, 522-546. https://doi.org/10.1016/j.jcsr.2019.04.013
- Gunawardena, Y. and Aslani, F. (2019b), "Concrete-filled spiral-welded stainless-steel tube long columns under concentric and eccentric axial compression loading", J. Constr. Steel Res., 161, 201-226. https://doi.org/10.1016/j.jcsr.2019.07.006
- Gunawardena, Y., Aslani, F. and Uy. B. (2019), "Concrete-filled mild-steel spiral-welded tube long columns under eccentric axial compression loading", J. Constr. Steel Res., 159, 341-363. https://doi.org/10.1016/j.jcsr.2019.04.045
- Kang, X.-L., Cheng, Y.-F., Tu, Y. and Xue, J.-Y. (2010), "Experimental study and numerical analysis of bond-slip performance for concrete filled steel tube", Gongcheng Lixue/Engineering Mechanics, 27(9), 102-106.
- Ke, X., Sun, H., Chen, Z., Su, Y. and Ying, W. (2015), "Interface mechanical behavior test and bond strength calculation of high-strength concrete filled circular steel tube", Jianzhu Jiegou Xuebao/Journal of Building Structures, 36, 401-406.
- Knoop, F.M. and Sommer, B. (2004), Manufacturing and use of spiral welded pipes for high pressure service - State of the art, American Society of Mechanical Engineers, Calgary, Alta, Canada.
- Kyriakides, S. and Corona, E. (2007), Mechanics of Offshore Pipelines, Elsevier Ltd.
- Lehman, D., Roeder, C. and Stephens, M.T. (2018), Concretefilled tube bridges for accelerated bridge construction, University of Washington.
- Lu, Y., Liu, Z., Li, S. and Li, N. (2018a), "Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns", Constr. Build. Mater., 158, 894-909. https://doi.org/10.1016/j.conbuildmat.2017.10.085
- Lu, Y., Liu, Z., Li, S. and Tang, W. (2018b), "Bond behavior of steel-fiber-reinforced self-stressing and self-compacting concrete-filled steel tube columns for a period of 2.5 years", Constr. Build. Materi., 167, 33-43. https://doi.org/10.1016/j.conbuildmat.2018.01.144
- Lyu, W.-Q. and Han, L.-H. (2019), "Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes", J. Constr. Steel Res., 155, 438-459. https://doi.org/10.1016/j.jcsr.2018.12.028
- Morino, S. and Tsuda, K. (2003), "Design and construction of concrete-filled steel tube column system in Japan", Earthq. Eng. Eng. Seismol., 4(1), 51-73.
- Radhika, K.S. and Baskar, K. (2012), "Bond stress characteristics on circular concrete filled steel tubular columns using mineral admixture metakaoline", Int. J. Civil Struct. Eng., 3(1), 1-8.
- Radhika, K.S. and Baskar, K. (2013), "Bond stress characteristics on circular concrete filled steel tubular columns using mineral admixture silica fume", Int. J. Earth Sci. Eng., 6(1), 170-177.
- Rasmussen, K.J.R. (2003), "Full-range stress-strain curves for stainless steel alloys", J. Constr. Steel Res., 59(1), 47-61. https://doi.org/10.1016/S0143-974X(02)00018-4
- Roeder, C.W., Cameron, B. and Brown, C.M. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
- Roeder, C.W., Lehman, D.E. and Thody, R. (2009), "Composite action in CFT components and connections", Eng. J., 46(4), 229-242.
- ROLADUCT Spiral Tubing Group (2017), Spiral Welded Tube, Pipe & Fittings: Product Information.
- Sadowski, A.J., Van Es, S.H.J., Reinke, T., Michael Rotter, J., Nol Gresnigt, A.M. and Ummenhofer, T. (2015), "Harmonic analysis of measured initial geometric imperfections in large spiral welded carbon steel tubes", Eng. Struct., 85, 234-248. https://doi.org/10.1016/j.engstruct.2014.12.033
- Shakir-Khalil, H. (1993), "Pushout strength of concrete-filled steel hollow section tubes", Struct. Engineer, 71(13).
- Standards Australia (2007), AS/NZS 1391-2007.
- Standards Australia (2017a), AS/NZS 2327:2017.
- Standards Australia (2017b), AS/NZS 5100.6:2017.
- Tao, Z., Han, L.-H. and Uy, B. (2012), "Behaviour of concrete-filled stainless steel tubular columns at ambient and elevated temperatures", Qingdao, China.
- Tao, Z., Song, T.-Y., Uy, B. and Han, L.-H. (2016), "Bond behavior in concrete-filled steel tubes", J. Constr. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030
- Tremayne, H., Mahin, S.A., Monterrosa, J.A., Dean, S., Fong, C., Jachens, E.R., Lam, D., Minner, M., Pavicic, J. and Rodriguez, L. (2013), Earthquake Engineering for Resilient Communities: 2013 PEER Internship Porgram Research Report Collection, Pacific earthquake engineering research center.
- Virdi, K.S. and Dowling, P.J. (1980), "Bond strength in concrete filled steel tubes", IABSE Periodica, 33(80), 15.
- Xu, C., Chengkui, H., Decheng, J. and Yuancheng, S. (2009), "Push-out test of pre-stressing concrete filled circular steel tube columns by means of expansive cement", Constr. Build. Mater., 23(1), 491-497. https://doi.org/10.1016/j.conbuildmat.2007.10.021
- Xu, J., Chen, Z., Xue, J. and Su, Y. (2013), "Failure mechanism of interface bond behavior between circular steel tube and recycled aggregate concrete by push-out test", Jianzhu Jiegou Xuebao/Journal of Building Structures, 34(7), 148-157.
- Xu, K., Bi, L. and Chen, M. (2015), "Experimental study on bond stress-slip constitutive relationship for CFST", Jianzhu Jiegou Xuebao/Journal of Building Structures, 36, 407-412.
- Yan, Z., An, M., Wu, P., Li, J. and Zhang, L. (2009), "Experimental study of the bond strength at the interface of reactive powder concrete-filled steel tube columns", Zhongguo Tiedao Kexue/China Railway Science, 30(6), 7-11.
- Yin, X. and Lu, X. (2010), "Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube", Steel Compos. Struct., Int. J., 10(4), 317-329. https://doi.org/10.12989/scs.2010.10.4.317
- Yuan, X. and Chen, X. (2018), "Effect analysis of expansion agent on interfacial bond behavior of concrete filled steel tubular", Chem. Eng. Transact., 66, 1165-1170. https://doi.org/10.3303/CET1866195
- Zhang, J., Denavit, M.D., Hajjar, J.F. and Lu, X. (2012), "Bond behavior of concrete-filled steel tube (CFT) structures", Eng. J., 49(4), 169-185.