DOI QR코드

DOI QR Code

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman (Department of Mathematical Sciences, Norwegian University of Science and Technology) ;
  • Rasheed, Adil (Department of Mathematics and Cybernetics, SINTEF Digital) ;
  • Kvamsdal, Trond (Department of Mathematical Sciences, Norwegian University of Science and Technology)
  • Received : 2019.02.05
  • Accepted : 2019.07.10
  • Published : 2019.12.25

Abstract

Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.

Keywords

Acknowledgement

Supported by : NOWITECH: Norwegian Research Centre for Offshore Wind Technology, FSI-WT, OPWIND: Operational Control for Wind Power Plants

The authors acknowledge the financial support from the Norwegian Research Council and the industrial partners of NOWITECH: Norwegian Research Centre for Offshore Wind Technology (Grant No.: 193823/S60) (http://www.nowitech.no), FSI-WT (Grant No.: 216465/E20) (http://www.fsi-wt.no) and OPWIND: Operational Control for Wind Power Plants (Grant No.: 268044/E20). Furthermore, the authors greatly acknowledge the Norwegian Metacenter for computational science (NOTUR-reference number: NN9322K/1589) (www.notur.no) for giving us access to the Vilje highperformance computer at the Norwegian University of Science and Technology (NTNU).

References

  1. Alexandros, M. and Chick, J. (2013), "Validation of a CFD model of wind turbine wakes with terrain effects", J. Wind Eng. Ind. Aerod., 123, 12-29. https://doi.org/10.1016/j.jweia.2013.08.009.
  2. ANSYS Academic Research, 2013. Release 15. ANSYS FLUENT Theory Guide Inc.
  3. Cleaver, D. J., Wang, Z. and Gursul, I. (2010), "Survey of modelling methods for wind turbine wakes and wind farms", Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, June.
  4. Crasto, G., Gravdahl, A., Castellani, F. and Piccioni, E. (2012), "Wake modeling with the actuator disc concept", Energy Procedia, 24, 385-392. https://doi.org/10.1016/j.egypro.2012.06.122.
  5. Crespo, A., Hernandez, J. and Frandsen, S. (1999), "Survey of modelling methods for wind turbine wakes and wind farms", Wind Energy, 2(1), 1-24. https://doi.org/10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7.
  6. Fonn, E., Brummelen, H.V., Kvamsdal, T. and Rasheed, A. (2019), "Fast divergence-conforming reduced basis methods for steady Navier-Stokes flow", Comput. Method. Appl. M., 346, 486-512. https://doi.org/10.1016/j.cma.2018.11.038.
  7. Ilhan, A., Bilgili, M. and Sahin, B. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 21-36. https://doi.org/10.12989/was.2018.27.3.187.
  8. Jasak, H. (2009), "Dynamic mesh handling in OpenFoam", Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida.
  9. Keerthana, M. and Harikrishna, P. (2017), "Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence", Wind Struct., 25(3), 301-328. https://doi.org/10.12989/was.2017.25.3.301.
  10. Krogstad, P.A. and Eriksen, P.E. (2013), "Blind test calculations of the performance and wake development for a model wind turbine", Renew. Energ., 50, 325-333. https://doi.org/10.1016/j.renene.2012.06.044.
  11. Krogstad, P.A. and Sæ tran, L. (2012), "An experimental and numerical study of the performance of a model turbine", Wind Energy, 15(3), 443-457. https://doi.org/10.1002/we.482.
  12. Krogstad, P.A., Sæ tran, L. and Adaramola, M.S. (2015), "Blind test 3 calculations of the performance and wake development behind two in-line and offset model wind turbines", J. Fluids Struct., 52, 65-80. https://doi.org/10.1016/j.jfluidstructs.2014.10.002.
  13. Li, S.W., Hu, Z.Z., Tse, K.T. and Weerasuriya, A.U. (2016), "Wind direction field under the influence of topography: part II: CFD investigations", Wind Struct., 22(2), 477-501. : http://dx.doi.org/10.12989/was.2016.22.4.477.
  14. Luhur, M.R., Manganhar, A.L., Solangi, K.H., Jakhrani, A.Q., Mukwana, K.C. and Samo, S.R. (2016), "A review of the stateof- the-art in aerodynamic performance of horizontal axis wind turbine", Wind Struct., 22(1), 1-16. http://dx.doi.org/10.12989/was.2016.22.1.001.
  15. Martinez Tossas, L.A., Churchfield, M.J. and Leonardi, S. (2015), "Large eddy simulations of the flow past wind turbines: actuator line and disk modeling", Wind Energy, 18(6), 1047-1060. https://doi.org/10.1002/we.1747.
  16. Mo, J.O., Choudhry, A., Arjomandi, M. and Lee, Y.H. (2013), "Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model", J. Wind Eng. Ind. Aerod., 112, 11-24. https://doi.org/10.1016/j.jweia.2012.09.002.
  17. Nordanger, K., Holdahl, R., Kvamsdal, T., Kvarving, A.M. and Rasheed, A. (2015), "Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier-Stokes solver with the Spalart-Allmaras turbulence model", Comput. Method. Appl. M., 290, 183-208. https://doi.org/10.1016/j.cma.2015.02.030.
  18. Nordanger, K., Holdahl, R., Kvarving, A.M., Rasheed, A. and Kvamsdal, T. (2015), "Implementation and comparison of three isogeometric Navier-Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number", Comput. Method. Appl. M., 284, 664-688. https://doi.org/10.1016/j.cma.2014.10.033.
  19. Ozdogan, M., Sungur, B., Namli, L. and Durmus, A. (2017), "Comparative study of turbulent flow around a bluff body by using two and three-dimensional CFD", Wind Struct., 25(6), 537-549. https://doi.org/10.12989/was.2017.25.6.537.
  20. Ronsten, G. (1992), "Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations", J. Wind Eng. Ind. Aerod., 39(1-3), 105-118. https://doi.org/10.1016/0167-6105(92)90537-K.
  21. Sanderse, B., van der Pijl, S. amd Koren, B. (2011), "Review of computational fluid dynamics for wind turbine wake aerodynamics", Wind Energy, 14(7), 799-819. https://doi.org/10.1002/we.458.
  22. Siddiqui, M.S., Fonn, E., Kvamsdal, T. and Rasheed, A. (2019), "Finite-volume high-fidelity simulation combined with finiteelement- based reduced-order modeling of incompressible flow problems", Energies, 12(7), 1271-1293. https://doi.org/10.3390/en12071271.
  23. Siddiqui, M.S., Rasheed, A., Kvamsdal, T. and Kvamsdal, T. (2017), "Quasi-static and dynamic numerical modeling of full scale NREL 5MW wind turbine", Energy Procedia, 137, 460-467. https://doi.org/10.1016/j.egypro.2017.10.370.
  24. Siddiqui, M.S., Rasheed, A., Kvamsdal, T. and Tabib, M. (2015), "Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine", Energy Procedia, 80, 312-320. https://doi.org/10.1016/j.egypro.2015.11.435.
  25. Siddiqui, M.S., Rasheed, A., Tabib, M. and Kvamsdal, T. (2019), "Numerical investigation of modeling frameworks and geometric approximations on NREL 5 MW wind turbine", Renew. Energ., 132, 1058-1075. https://doi.org/10.1016/j.renene.2018.07.062.
  26. Snel, H., Schepers, J.G. and Montgomerie, B. (2007), "The MEXICO project (model experiments in controlled conditions): The database and first results of data processing and interpretation", J. Physics, 75, 012014. https://doi.org/10.1088/1742-6596/75/1/012014
  27. Somers, D.M. (2005), "The S825 and S826 airfoils", Techincal Report NREL/SR-500-36344, National Renewable Energy Laboratory, CO, USA.
  28. Sorensen, J., Shen, W.Z. and Munduate, X. (1998), "Analysis of wake states by a full-field actuator disc model", Wind Energy, 1, 73-88. https://doi.org/10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L.
  29. Sorensen, N.N., Bechmann, A., Boudreault, L.E., Koblitz, T. and Sogachev, (2013), "A CFD applications in wind energy using RANS",CFD for atmospheric flows and wind engineering, von Karman Institute for Fluid Dynamics, Lecture Series, No. 2013-02.
  30. Sorensen, N.N., Michelsen, J.A. and Schreck, S. (2002), "Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80ft x 120ft wind tunnel", Wind Energy, 5, 151-169. DOI: 10.1002/we.64.
  31. Stevens, R.J., Tossas, L.A.M. and Meneveau, C. (2018), "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments", Renew. Energ., 116, 470-478. https://doi.org/10.1016/j.renene.2017.08.072.
  32. Troldborg, N., Sorensen, J.N. and Mikkelsen, R. (2007), "Actuator line simulation of wake of wind turbine operating in turbulent inflow", J. Physics, 75, 012063. https://doi.org/10.1088/1742-6596/75/1/012063
  33. Troldborg, N., Zahle, F. and Sorensen, N.N. (2015), "Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model", Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida.
  34. Wilcox, D. (1994), "Simulation of transition with a two-equation turbulence model", AIAA J., 32, 247-255. https://doi.org/10.2514/3.59994
  35. Yang, H., Shen, W., Xu, H., Hong, Z. and Liu, C. (2014), "Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD", Renew. Energ, 70, 107-115. https://doi.org/10.1016/j.renene.2014.05.002
  36. Zhang, Y., Gillebaart, T., van Zuijlen, A., van Bussel, G. and Bijl, H. (2017), "Experimental and numerical investigations of aerodynamic loads and 3D flow over non-rotating MEXICO blades", Wind Energy, 20(4), 585-600. https://doi.org/10.1002/we.2025.
  37. Zhong, H., Du, P., Tang, F. and Wang, L. (2015), "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method", Appl. Energy, 144, 224-233. https://doi.org/10.1016/j.apenergy.2015.01.082.
  38. Zhong, H., Du, P., Tang, F. and Wang, L. (2015), "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method", Appl. Energy, 144, 224-233. https://doi.org/10.1016/j.apenergy.2015.01.082.