Acknowledgement
Supported by : NOWITECH: Norwegian Research Centre for Offshore Wind Technology, FSI-WT, OPWIND: Operational Control for Wind Power Plants
The authors acknowledge the financial support from the Norwegian Research Council and the industrial partners of NOWITECH: Norwegian Research Centre for Offshore Wind Technology (Grant No.: 193823/S60) (http://www.nowitech.no), FSI-WT (Grant No.: 216465/E20) (http://www.fsi-wt.no) and OPWIND: Operational Control for Wind Power Plants (Grant No.: 268044/E20). Furthermore, the authors greatly acknowledge the Norwegian Metacenter for computational science (NOTUR-reference number: NN9322K/1589) (www.notur.no) for giving us access to the Vilje highperformance computer at the Norwegian University of Science and Technology (NTNU).
References
- Alexandros, M. and Chick, J. (2013), "Validation of a CFD model of wind turbine wakes with terrain effects", J. Wind Eng. Ind. Aerod., 123, 12-29. https://doi.org/10.1016/j.jweia.2013.08.009.
- ANSYS Academic Research, 2013. Release 15. ANSYS FLUENT Theory Guide Inc.
- Cleaver, D. J., Wang, Z. and Gursul, I. (2010), "Survey of modelling methods for wind turbine wakes and wind farms", Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, June.
- Crasto, G., Gravdahl, A., Castellani, F. and Piccioni, E. (2012), "Wake modeling with the actuator disc concept", Energy Procedia, 24, 385-392. https://doi.org/10.1016/j.egypro.2012.06.122.
- Crespo, A., Hernandez, J. and Frandsen, S. (1999), "Survey of modelling methods for wind turbine wakes and wind farms", Wind Energy, 2(1), 1-24. https://doi.org/10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7.
- Fonn, E., Brummelen, H.V., Kvamsdal, T. and Rasheed, A. (2019), "Fast divergence-conforming reduced basis methods for steady Navier-Stokes flow", Comput. Method. Appl. M., 346, 486-512. https://doi.org/10.1016/j.cma.2018.11.038.
- Ilhan, A., Bilgili, M. and Sahin, B. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 21-36. https://doi.org/10.12989/was.2018.27.3.187.
- Jasak, H. (2009), "Dynamic mesh handling in OpenFoam", Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida.
- Keerthana, M. and Harikrishna, P. (2017), "Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence", Wind Struct., 25(3), 301-328. https://doi.org/10.12989/was.2017.25.3.301.
- Krogstad, P.A. and Eriksen, P.E. (2013), "Blind test calculations of the performance and wake development for a model wind turbine", Renew. Energ., 50, 325-333. https://doi.org/10.1016/j.renene.2012.06.044.
- Krogstad, P.A. and Sæ tran, L. (2012), "An experimental and numerical study of the performance of a model turbine", Wind Energy, 15(3), 443-457. https://doi.org/10.1002/we.482.
- Krogstad, P.A., Sæ tran, L. and Adaramola, M.S. (2015), "Blind test 3 calculations of the performance and wake development behind two in-line and offset model wind turbines", J. Fluids Struct., 52, 65-80. https://doi.org/10.1016/j.jfluidstructs.2014.10.002.
- Li, S.W., Hu, Z.Z., Tse, K.T. and Weerasuriya, A.U. (2016), "Wind direction field under the influence of topography: part II: CFD investigations", Wind Struct., 22(2), 477-501. : http://dx.doi.org/10.12989/was.2016.22.4.477.
- Luhur, M.R., Manganhar, A.L., Solangi, K.H., Jakhrani, A.Q., Mukwana, K.C. and Samo, S.R. (2016), "A review of the stateof- the-art in aerodynamic performance of horizontal axis wind turbine", Wind Struct., 22(1), 1-16. http://dx.doi.org/10.12989/was.2016.22.1.001.
- Martinez Tossas, L.A., Churchfield, M.J. and Leonardi, S. (2015), "Large eddy simulations of the flow past wind turbines: actuator line and disk modeling", Wind Energy, 18(6), 1047-1060. https://doi.org/10.1002/we.1747.
- Mo, J.O., Choudhry, A., Arjomandi, M. and Lee, Y.H. (2013), "Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model", J. Wind Eng. Ind. Aerod., 112, 11-24. https://doi.org/10.1016/j.jweia.2012.09.002.
- Nordanger, K., Holdahl, R., Kvamsdal, T., Kvarving, A.M. and Rasheed, A. (2015), "Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier-Stokes solver with the Spalart-Allmaras turbulence model", Comput. Method. Appl. M., 290, 183-208. https://doi.org/10.1016/j.cma.2015.02.030.
- Nordanger, K., Holdahl, R., Kvarving, A.M., Rasheed, A. and Kvamsdal, T. (2015), "Implementation and comparison of three isogeometric Navier-Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number", Comput. Method. Appl. M., 284, 664-688. https://doi.org/10.1016/j.cma.2014.10.033.
- Ozdogan, M., Sungur, B., Namli, L. and Durmus, A. (2017), "Comparative study of turbulent flow around a bluff body by using two and three-dimensional CFD", Wind Struct., 25(6), 537-549. https://doi.org/10.12989/was.2017.25.6.537.
- Ronsten, G. (1992), "Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations", J. Wind Eng. Ind. Aerod., 39(1-3), 105-118. https://doi.org/10.1016/0167-6105(92)90537-K.
- Sanderse, B., van der Pijl, S. amd Koren, B. (2011), "Review of computational fluid dynamics for wind turbine wake aerodynamics", Wind Energy, 14(7), 799-819. https://doi.org/10.1002/we.458.
- Siddiqui, M.S., Fonn, E., Kvamsdal, T. and Rasheed, A. (2019), "Finite-volume high-fidelity simulation combined with finiteelement- based reduced-order modeling of incompressible flow problems", Energies, 12(7), 1271-1293. https://doi.org/10.3390/en12071271.
- Siddiqui, M.S., Rasheed, A., Kvamsdal, T. and Kvamsdal, T. (2017), "Quasi-static and dynamic numerical modeling of full scale NREL 5MW wind turbine", Energy Procedia, 137, 460-467. https://doi.org/10.1016/j.egypro.2017.10.370.
- Siddiqui, M.S., Rasheed, A., Kvamsdal, T. and Tabib, M. (2015), "Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine", Energy Procedia, 80, 312-320. https://doi.org/10.1016/j.egypro.2015.11.435.
- Siddiqui, M.S., Rasheed, A., Tabib, M. and Kvamsdal, T. (2019), "Numerical investigation of modeling frameworks and geometric approximations on NREL 5 MW wind turbine", Renew. Energ., 132, 1058-1075. https://doi.org/10.1016/j.renene.2018.07.062.
- Snel, H., Schepers, J.G. and Montgomerie, B. (2007), "The MEXICO project (model experiments in controlled conditions): The database and first results of data processing and interpretation", J. Physics, 75, 012014. https://doi.org/10.1088/1742-6596/75/1/012014
- Somers, D.M. (2005), "The S825 and S826 airfoils", Techincal Report NREL/SR-500-36344, National Renewable Energy Laboratory, CO, USA.
- Sorensen, J., Shen, W.Z. and Munduate, X. (1998), "Analysis of wake states by a full-field actuator disc model", Wind Energy, 1, 73-88. https://doi.org/10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L.
- Sorensen, N.N., Bechmann, A., Boudreault, L.E., Koblitz, T. and Sogachev, (2013), "A CFD applications in wind energy using RANS",CFD for atmospheric flows and wind engineering, von Karman Institute for Fluid Dynamics, Lecture Series, No. 2013-02.
- Sorensen, N.N., Michelsen, J.A. and Schreck, S. (2002), "Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80ft x 120ft wind tunnel", Wind Energy, 5, 151-169. DOI: 10.1002/we.64.
- Stevens, R.J., Tossas, L.A.M. and Meneveau, C. (2018), "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments", Renew. Energ., 116, 470-478. https://doi.org/10.1016/j.renene.2017.08.072.
- Troldborg, N., Sorensen, J.N. and Mikkelsen, R. (2007), "Actuator line simulation of wake of wind turbine operating in turbulent inflow", J. Physics, 75, 012063. https://doi.org/10.1088/1742-6596/75/1/012063
- Troldborg, N., Zahle, F. and Sorensen, N.N. (2015), "Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model", Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida.
- Wilcox, D. (1994), "Simulation of transition with a two-equation turbulence model", AIAA J., 32, 247-255. https://doi.org/10.2514/3.59994
- Yang, H., Shen, W., Xu, H., Hong, Z. and Liu, C. (2014), "Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD", Renew. Energ, 70, 107-115. https://doi.org/10.1016/j.renene.2014.05.002
- Zhang, Y., Gillebaart, T., van Zuijlen, A., van Bussel, G. and Bijl, H. (2017), "Experimental and numerical investigations of aerodynamic loads and 3D flow over non-rotating MEXICO blades", Wind Energy, 20(4), 585-600. https://doi.org/10.1002/we.2025.
- Zhong, H., Du, P., Tang, F. and Wang, L. (2015), "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method", Appl. Energy, 144, 224-233. https://doi.org/10.1016/j.apenergy.2015.01.082.
- Zhong, H., Du, P., Tang, F. and Wang, L. (2015), "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method", Appl. Energy, 144, 224-233. https://doi.org/10.1016/j.apenergy.2015.01.082.