DOI QR코드

DOI QR Code

홈보안 시스템을 위한 CNN 기반 2D와 2.5D 얼굴 인식

CNN Based 2D and 2.5D Face Recognition For Home Security System

  • ;
  • 김강철 (전남대학교 전기전자컴퓨터공학부)
  • 투고 : 2019.09.24
  • 심사 : 2019.12.15
  • 발행 : 2019.12.31

초록

4차 산업혁명의 기술이 우리도 모르는 사이 우리의 삶 속으로 스며들고 있다. CNN이 이미지 인식 분야에서 탁월한 능력을 보여준 이후 많은 IoT 기반 홈보안 시스템은 침입자로부터 가족과 가정을 보호하며 얼굴을 인식하기 위한 좋은 생체인식 방법으로 CNN을 사용하고 있다. 본 논문에서는 2D와 2.5D 이미지에 대하여 여러 종류의 입력 이미지 크기와 필터를 가지고 있는 CNN의 구조를 연구한다. 실험 결과는 50*50 크기를 가진 2.5D 입력 이미지, 2 컨벌류션과 맥스풀링 레이어, 3*3 필터를 가진 CNN 구조가 0.966의 인식률을 보여 주었고, 1개의 입력 이미지에 대하여 가장 긴 CPU 소비시간은 0.057S로 나타났다. 홈보안 시스템은 좋은 얼굴 인식률과 짧은 연산 시간을 요구하므로 본 논문에서 제안한 구조의 CNN은 홈보안 시스템에서 얼굴인식을 기반으로 하는 액추에이터 제어 등에 적합한 방법이 될 것이다.

Technologies of the 4th industrial revolution have been unknowingly seeping into our lives. Many IoT based home security systems are using the convolutional neural network(CNN) as good biometrics to recognize a face and protect home and family from intruders since CNN has demonstrated its excellent ability in image recognition. In this paper, three layouts of CNN for 2D and 2.5D image of small dataset with various input image size and filter size are explored. The simulation results show that the layout of CNN with 50*50 input size of 2.5D image, 2 convolution and max pooling layer, and 3*3 filter size for small dataset of 2.5D image is optimal for a home security system with recognition accuracy of 0.966. In addition, the longest CPU time consumption for one input image is 0.057S. The proposed layout of CNN for a face recognition is suitable to control the actuators in the home security system because a home security system requires good face recognition and short recognition time.

키워드

참고문헌

  1. A. Bahga and V. Madisetti, Internet of Things, Arshdeep Bahga & Vijay Madsetti, 2014.
  2. K. Kim, D. Wang, and S. Han, "Home Security System Based on IoT," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 1, Feb. 2017, pp. 147-154, https://doi.org/10.13067/JKIECS.2017.12.1.147
  3. H. Zhang, Z. Qu, L. Yuan, and G. Li, "A face recognition method based on LBP Feature for CNN," 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing China, Feb. 2017, pp. 544-547.
  4. P. Li, J. Li, and G. Wang, "Application of convolutional neural network in natural language processing," 2018 15th Int. Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, Aug. 2018, pp. 120-122.
  5. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, no.1, 2012, pp. 1097-1105.
  6. S. Pui and J. Minoi, "Automatic Landmarking on 2.5D Face Range Images," 2014 Fifth Int. Con. on Intelligent System, Modelling and Simulation, Langkawi, Malaysia, 2014, pp. 261-265.
  7. H. Hu, S. A. Shah, M. Bennamoun, and M. Molton, "2D and 3D Face recognition Using Convolutional Neural Network," Proc. of the 2017 IEEE regional 10 Conference, Penang, Malaysia, Nov. 2017. pp. 133-138.
  8. S. R. Benedict and J. S. Kumar, "Geometric Shaped Facial Feature Extraction for Face Recognition," 2016 IEEE Int. Conf. on Advances in Computer Applications (ICACA), Coimbatore, India, Apr. 2016, pp. 275-278.
  9. M. Yang, L. Zhang, S. Shiu, and D. Zhang, "Robust Kernel Representation With Statistical Local Features for Face Recognition," IEEE, transactions on neural networks and learning systems, vol. 24, no. 6, June 2013, pp. 900-912. https://doi.org/10.1109/TNNLS.2013.2245340
  10. Z. Sun and J. Cheng, "Face Recognition with statistical Local Line Binary Pattern," IEEE, Seventh Int. Conf. on Computational Intelligence and Security, Hainan, China, Apr. 2011, pp. 1114-1117.
  11. L. X. Wei, Y. Sheng, W. Qi, and L. Ming, "Face Recognition Based on Wavelet Transform and PCA," IEEE, Pacific-Asia Conf. on Knowledge Engineering and Software Engineering, Shenzhen, China, Apr. 2009, pp. 136-138.
  12. Z. Lihong, S. Ying, Z. Yushi, Z. Cheng, and Z. Yi, "Face Recognition based on multi-class SVM," 2009 Chinese Control and Decision Conference, Guilin, China, Sept. 2009, pp. 5871-5873.
  13. Q. xiaoyan, "Face Recognition Algorithm Based on AAM and FNN," 2014 Fifth Int. Conf. on Intelligent Systems Design and Engineering Applications, Hunan, China, Sept. 2014, pp. 464-468.
  14. M. Coskun, A. Ucar, O. Yildirim, and Y. Demir, "Face Recognition Based on Convolutional Neural Network," 2017 Int. Conf. on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, Feb. 2017, pp. 376-379.
  15. A. Adil, J. Hind, and J. Cheng, " Localized Deep CNN Structure for Face Recognition," 2018 11th Int. Conf. on Developments in eSystems Engineering (DeSE), Cambridge, United Kingdom, May 2018, pp. 52-57.
  16. K. Kim and H. Wei, "Development of a Face Detection and Recognition System Using a RaspberryPi," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 05, 2017, pp. 859-864. https://doi.org/10.13067/JKIECS.2017.12.5.859
  17. D. Baggio, Daniel , D. Escriva, N. Mahmood, R. Shilkrot, S. Emami, K. Ievgen, and J. Saragih, Mastering OpenCV with practical computer vision projects. Packt Publishing, 2012.
  18. F. Ertam and G. Aydin, "Data Classification with Deep Learning using Tensorflow," 2017 Int. Conf. on Computer Science and Engineering (UBMK), Antalya, Turkey, Sept. 2017, pp. 755-758.
  19. A. Nagisetty and G. P. Gupta, "Framework for Detection of Malicious Activities in IoT Networks using Keras Deep Learning Library," 2019 3rd Int. Conf. on Computing Methodologies and Communication, Erode, India, Apr. 2019, pp. 633-637.
  20. B. Weyrauch, J. Huang, B. Heisele, and V. Blanz, "Component-based Face Recognition with 3D Morphable Models," 2004 Conf. on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 2004, pp. 27-34.