• Title/Summary/Keyword: 얼굴 정확도

검색결과 515건 처리시간 0.027초

저조도 환경에서의 반복적 조도 향상을 이용한 얼굴 검증 (A Face Verification using Iterative Light Enhancement in Low Light Environment)

  • 이상훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1222-1225
    • /
    • 2022
  • 본 논문에서는 저조도 환경에서 촬영된 영상의 조도를 개선하여 얼굴 검증 정확도를 높이는 방법을 제안하였다. 입력 이미지의 조도 개선을 통해 얼굴 검출 정확도를 개선하며, 검출된 얼굴의 반복적인 조도 향상을 통해 생성된 다수의 특징 벡터를 이용하여 얼굴 검증에 이용하였다. 얼굴 검출 및 검증 정확도 측정을 위해 K-FACE 데이터셋을 이용하였다. 저조도 환경에서 촬영된 검증 이미지에 대하여, 제안하는 특징 벡터 합성 방법으로 인해, 동일인 쌍 및 타인 쌍의 유사도 점수 분포의 표준 편차가 줄어드는 경향을 확인했으며, 이로 인해 검증 성능이 높아지는 결과를 얻었다.

  • PDF

히스토그램과 영역분할 기법을 이용한 얼굴추출에 관한 연구 (A Study on The Face Extraction Using Histogram and Region Segmentation)

  • 황훈;최철;최영관;조성민;박장춘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.633-636
    • /
    • 2002
  • 기존에 얼굴인식이나 얼굴영역을 추출하는 방법들은 대부분 얼굴의 외곽선은 고려하지 않은 상태에서 얼굴의 특징인 눈, 코, 입 부분만을 추출하는 경우가 많아 정확한 얼굴을 추출하기가 어려웠다. 본 논문에서는 얼굴의 색상과 영역분할 기법(Region Segmentation technique)을 함께 사용해서 얼굴부분과 얼굴의 특징을 추출하여 보다 정확한 얼굴 부분을 분할하고자 한다. 얼굴추출방법을 대표색상 추출과정과 실제 영역을 분할하여 얼굴부분을 추출하는 과정으로 나누어 히스토그램을 이용하여 대표색상을 추출한 후, 영역분할 기법을 이용하여 대표색상을 포함하고 있는 영역에 대해 얼굴이라는 가정을 배제하고, 이미지들을 객체(Object)화 하여 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다.

  • PDF

얼굴 특징 벡터를 이용한 효율적인 얼굴 인식 알고리즘 (An Efficient Algorithm of Face Recognition Using Facial Feature Vectors)

  • 전승철;박성한
    • 방송공학회논문지
    • /
    • 제3권2호
    • /
    • pp.164-171
    • /
    • 1998
  • 사람의 얼굴은 일반 객체와는 다르게 정확히 구별되는 특징이 없다. 따라서 일반적으로 사람 얼굴에 관한 연구에서는 인간이 사람의 얼굴을 볼 대 가장 먼저 인식을 하는 눈, 코, 입을 특징으로 정하고 있다. 이러한 특징은 사람에 따라 다르게 나타나며 주위환경에 영향을 받는다. 따라서 이러한 사람의 특징을 정확히 찾아내는 것이 중요하다. 본 논문에서는 얼굴 특징점의 기하학적 성질을 이용하여 눈, 코, 입의 특징점을 효율적으로 찾아내는 알고리즘을 제안하고 있다. 이러한 특징점을 이용해서 얼굴 특징점 벡터와 얼굴 특징점 영상을 얻어낸다. 이 후 임의 입력 사람 얼굴에 대해서 얼굴 특징점 벡터의 유클리디안 거리와 밀 기록된 특징점 영상과의 상관관계를 이용해 유사도를 계산해서 얼굴을 인식한다. 제안하는 방법은 기존의 방법보다 계산 복잡도가 적으며 또한 정확한 인식을 얻는다.

  • PDF

동적 모델을 이용한 얼굴 영상에서의 관심 영역 추출 (Region-of-Interest Detection from a Facial Image Using Active Model)

  • 이형일;김경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.343-345
    • /
    • 2001
  • 본 논문에서는 얼굴 인식 시스템에서 정면 얼굴 영상의 관심 영역을 추출하는 효율적인 방법을 소개한다. 얼굴 인식 시스템은 얼굴 요소의 특징 을 이용하여 자동으로 얼굴을 구별하는 시스템이며, 얼굴 요소로는 눈, 코, 입과 눈썹을 주로 사용한다. 본 논문에서는 동적 모델을 이용하여 눈과 입을 관심영역으로 하여 이 영역을 세 단계로 나누어 추출한다. 첫 번째로 전체 얼굴 모델을 이용하여 similarity 변환을 적용하여 얼굴의 대략적인 위치를 찾는다. 두 번째 단계에서는 얼굴 근처에서 각각의 눈, 입 모델을 비선형 변환을 적용하여 정확한 눈과 입을 찾는다. 최종 단계에서는 이렇게 맞춘 모델로부터 전체 모델을 변형시킨 후에 변형전과 후의 적합성을 판단하여 최종 위치를 정한다. 제안한 알고리즘을 130명의 영상에 대하여 적용한 결과 눈을 정확하게 추출한 경우는 120명이고, 입을 정확히 추출한 경우는 119명이었다. 본 논문에서 제안하는 관심 영역 추출 방법은 일반적인 모델 방법에 특정 목적에 적합한 모델을 혼합한 방법으로 일반적인 모델만을 적용한 방법과 프로젝션 분석 등의 특정 목적만을 위한 방법보다 좋은 결과를 얻을 수 있었다.

  • PDF

동영상에서의 색상 정보와 차영상을 이용한 얼굴 영역 추출에 관한 연구 (The Extraction of Face Regions in Dynamic Image Using Color Information and Difference Images)

  • 박형철;전병환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.455-457
    • /
    • 1998
  • 동영상에서의 얼굴 영역 추출은 헤드 제스처 인터페이스를 위한 기본적이고 필수적인 기법이다. 얼굴 영역 추출을 위해서는 색상 정보와 차영상을 이용한 방법이 많이 사용되며, 색상 정보를 이용하는 방법에는 HSI의 H(hue)성분과 YIQ의 I(in-phase)성분이 널리 알려져 있다. 본 논문에서는 먼저 얼굴 색상에 해당하는 각 색상 성분의 구간을 탐색하고, 다음으로 각 색상 정보를 이용한 얼굴 영역 검출의 정확도를 비교 실험한다. 또한, 색상 정보와 차영상을 결합한 방법에 대해서도 얼굴 영역 검출의 정확도를 비교한다. 실험 결과, YIQ의 경우 구간 130~150, HSI의 경우 구간 0~20에서 얼굴색을 잘 표현하는 것으로 나타났다. 얼굴 영역 검출의 정확도 측면에서는, 색상 정보만을 이용한 실험의 경우 YIQ가 HSI에 비해 약 10%의 향상된 성능을 보였고, 색상 정보와 차영상을 결합한 경우에서도 YIQ가 약 5%의 향상된 성능을 보였다.

  • PDF

Watershed Algorithm 과 Object Grouping 을 이용한 얼굴영역분할 (Face Region Segmentation using Watershed Algorithm And Object Grouping)

  • 황훈;최영관;최철;이정아;박장춘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.587-590
    • /
    • 2003
  • 얼굴영역을 분할하기 위해서 Watershed Algorithm 와 Object Grouping 을 이용한 얼굴영역 분할기법을 제안한다. 영상분할에 단점은 단일 알고리즘으로 영역분할이 어렵고, 또한 복잡한 영상에서 정확한 영역을 분할하기가 어렵다는 것이다. 그래서 본 논문에서는 Watershed Segmentation 기법과 Grouping 작업을 통한 병합, 그리고 색상의 선형회귀분석을 이용한 분석법을 적용하여 분할하고자 한다. 얼굴영역 분할방법을 전처리 과정과 영역 병합 그리고 얼굴 부분을 추출하는 3 단계의 과정으로 나누고, 전처리 과정에서는 수리형태학적(Mophological) 연산자를 이용한 영상 분할기법을 이용하여 분할한 후 얼굴 후보 영역을 검출, 영역병합과정에서 기존의 학습데이터와의 유사도를 측정, 얼굴객체추출 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다. 실험결과 제안한 방법을 통해 비교적 정확한 얼굴영역을 분할 할 수 있었다.

  • PDF

영역 분할을 이용한 얼굴 영역 검출 (Face Detection Using Region Segmentation)

  • 박선영;이재원;강병두;김종호;김상균
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.712-714
    • /
    • 2004
  • 본 논문에서는 다양한 변화에서 얼굴을 효과적으로 검출할 수 있는 방법론을 제안한다. 우리는 복잡한 배경에서 보다 효과적으로 얼굴 영역을 검출하기 위해 영역 분할 알고리즘인 JSEG를 이용하여 영역을 분할을 하게 된다. 그리고 조명 변화에 따른 간섭이 비교적 작은 YCrCb 칼라 모델을 이용하여 분할된 영역에서 후보 얼굴 영역을 찾는다. 마지막으로 보다 정확한 결과를 위하여 검출된 얼굴 후보 영역에서 눈과 눈썹을 검출하고 눈과 눈썹의 기하학적 정보를 이용해서 최종 얼굴 영역을 결정한다. 영역 분할을 이용함으로써 복잡한 배경과 다양한 조명 변화를 지닌 환경에서 다양한 얼굴 영상들을 실험한 결과 높은 정확도를 보여주었다.

  • PDF

FLD를 이용한 얼굴 검출의 성능 향상을 위한 연구 (A Study on Face Detection Performance Enhancement Using FLD)

  • 남미영;이필규;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.225-230
    • /
    • 2004
  • 얼굴 검출은 디지털화된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재 유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 둥을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 재스쳐 등의 기초 기술로서 해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 둥의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 피셔의 선형 판별 분석을 이용하여 몇 가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 포즈와, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 계층적인 방법으로 얼굴 검출을 수행하며, 휴리스틱한 방법, 피셔의 판별 분석을 이용하여 얼굴 검출을 수행하고 검색 영역의 축소와 선형 결정의 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다.

  • PDF

반복적 확장 칼만 필터를 이용한 얼굴의 3차원 움직임량 추정 (3-D Facial Motion Estimation Using Iterative Extended Kalman Filter)

  • 박강령;김재희
    • 정보처리학회논문지B
    • /
    • 제8B권1호
    • /
    • pp.28-34
    • /
    • 2001
  • 컴퓨터 시각 인식 방법을 이용하여 얼굴의 3차원 움직임 량을 추정하고자 하는 연구는 가상 현실 환경에서 얼굴 움직임에 의한 3차원 그래픽 화면 조정, 시뮬레이터에서의 훈련자 얼굴 움직임에 의한 화면 조정 및 모니터상의 시선 위치 파악 등을 위해 필수적으로 요구되는 기술로서 최근 활발히 연구되고 있다. 기존에 얼굴의 3차원 움직임 량을 추정하고자 하는 연구들은 대부분 확장 칼만 필터(extended kalman filter)를 이용하였으나, 이러한 방법은 필터의 초기 값을 정확하게 설정해야하는 제약 요소를 갖고 있으며, 또한 얼굴의 회전 방향 변화 시 이에 대처하지 못하는 경우 역시 종종 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위하여 확장 칼만 필터의 변형 형태인 반복적 확장 칼만 필터를 이용하여 얼굴의 3차원 움직임 량을 추정하였다. 반복적 확장 칼만 필터에서는 확장 칼만 필터에서 계산되어 나오는 추정 오차 공분산 행렬 값이 미리 정해진 임계치보다 커지는 경우, 현재 얼굴의 움직임 량을 제대로 추정하지 못하고 있는 것으로 판단하여 칼만 필터에서 사용하는 회전 및 이동 속도, 그리고 회전 및 이동 각 속도를 변형함으로써 얼굴의 움직임 량을 정확하게 추정할 수 있도록 하는 방법이다. 실험 결과 반복적 확장 칼만 필터를 사용하였을 경우에 얼굴의 급격한 회전 방향 변화에도 얼굴의 3차원 움직임 량을 정확하게 추정할 수 있음을 알 수 있었다.

  • PDF

입체 음향을 위한 개선된 얼굴 방위각 검출 (Improved Detection Method Face Rotation Angle for 3D Sound System)

  • 한상일;류일현;서보국;구교식;차형태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.201-204
    • /
    • 2008
  • 머리전달함수(HRTF)가 정확하더라도 사람의 얼굴이 움직이게 되면 실제 머리전달함수와 미리 측정한 머리전달 함수가 달라져 입체음향 시스템의 성능이 저하되므로 정확한 얼굴의 회전각이 요구된다. 따라서 본 논문에서는 정확한 머리전달함수의 입력을 위해 사람 얼굴의 회전각을 추정하고자 한다. 제안하는 알고리즘은 먼저 Haar-like 특징을 이용하여 얼굴을 검출한 후 전처리 작업을 통해 눈의 바깥쪽 경계면과 안쪽 경계면을 검출한다. 그리고 검출된 두 개의 경계면의 비를 이용하여 얼굴의 회전각을 추정한다. 제안하는 알고리즘은 기존에 방법들에 비해 적용 범위가 넓음을 실험을 통해 알 수 있었다.

  • PDF