DOI QR코드

DOI QR Code

Progress in hybrid greenhouse solar dryer (HGSD): A review

  • Singh, Pushpendra (Department of Mechanical Engineering, Madhav Institute of Technology and Science) ;
  • Gaur, Manoj K. (Department of Mechanical Engineering, Madhav Institute of Technology and Science) ;
  • Kushwah, Anand (Department of Mechanical Engineering, Madhav Institute of Technology and Science) ;
  • Tiwari, G.N. (Research and Development Cell, SRM University)
  • Received : 2019.01.09
  • Accepted : 2019.10.24
  • Published : 2019.09.25

Abstract

The world population reaches to about 7.7 billion in 2018 from 6.2 billion in 2000. This much growth in population results in increased energy demand and increased food supply. As the conventional energy sources are limited. These may deplete soon if consumed at this rate. So, the world is switching towards the utilization of non-conventional sources of energy. Energy from sun is the best method as it can not only solve the energy issue but also helps in meeting food demand by conserving it. Greenhouses are made for the purpose of food conservation. Various types of solar dryers are developed by researchers till now and still the effort is being putted to make them more efficient. Hybrid greenhouse is also effort toward utilization of solar energy in more efficient way. The paper presents the heat and mass transfer analysis of hybrid greenhouse solar dryer developed by different researchers till now. The review helps the researcher in understanding the heat and mass transfer taking place inside the hybrid greenhouse and how it can be further improved.

Keywords

References

  1. Aritesty, E. and Wulandani, D. (2014), "Performance of the rack type-greenhouse effect solar dryer for wild ginger (curcuma xanthorizzaroxb) drying", Energy Procedia, 47, 94-100. https://doi.org/10.1016/j.egypro.2014.01.201.
  2. Ayyappan, S., Mayilsamy, K. and Sreenarayanan, V.V. (2016), "Performance improvement studies in a solar greenhouse dryer using sensible heat storage materials", Heat Mass Transfer, 52, 459-467. https://doi.org/10.1007/s00231-015-1568-5.
  3. Azaizia, Z., Kooli, S., Elkhadraoui, A., Hamdi, I. and Guizani, A.A. (2017), "Investigation of a new solar greenhouse dryingsystem for peppers", Int. J. Hydrogen Energy, 1-9. http://dx.doi.org/10.1016/j.ijhydene.2016.11.180.
  4. Banout, J., Ehl, P., Havlik, J., Lojka, B., Polesny, Z. and Verner, V. (2011), "Design and performance evaluation of a Double-pass solar drierfor drying of red chilli (Capsicum annum L.)", Solar Energy, 85, 506-515. https://doi.org/10.1016/j.solener.2010.12.017.
  5. Barnwal, P. and Tiwari, A. (2008), "Design, construction and testing of hybrid photovoltaic integrated greenhouse dryer", Int. J. Agricult. Res., 3 (2), 110-120. http://dx.doi.org/10.3923/ijar.2008.110.120.
  6. Barnwal, P. and Tiwari, G.N. (2008), "Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study", Solar Energy, 82, 1131-1144. https://doi.org/10.1016/j.solener.2008.05.012.
  7. Belloulid, M. O., Hamdi, H., Mandi, L. and Ouazzani, N. (2017), "Solar greenhouse drying of waste water sludges under arid climate", Waste Biomass Valor., 8, 193-202. https://doi.org/10.1007/s12649-016-9614-1.
  8. Chan, Y., Dyah, N. and Abdullah, K. (2015), "Performance of a recirculation type integrated collector drying chamber (ICDC) solar dryer", Energy Procedia, 68, 53-59. https://doi.org/10.1016/j.egypro.2015.03.232.
  9. Chauhan, P.S. and Kumar, A. (2016), "Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode", Energy, 1-11. https://doi.org/10.1016/j.energy.2016.11.006.
  10. Chauhan, P.S. and Kumar, A. (2016), "Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode", Energy Reports, 2, 107-116. https://doi.org/10.1016/j.egyr.2016.05.004.
  11. Chauhan, P.S. and Kumar, A. (2017), "Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode", Energy, 118, 1264-1274. https://doi.org/10.1016/j.energy.2016.11.006.
  12. Chauhan, P.S., Kumar, A. and Tekasakul, P. (2015), "Applications of software in solar drying systems: A review", Renew. Sust. Energy Rev., 51, 1326-1337. https://doi.org/10.1016/j.rser.2015.07.025.
  13. Chauhan, P.S., Kumar, A. and Gupta B. (2016), "A review on thermal models for greenhouse dryers", Renew. Sust. Energy Rev., 75, 548-558. https://doi.org/10.1016/j.rser.2016.11.023.
  14. Chauhan, P.S., Kumar, A. and Nuntadusit, C. (2018), "Heat transfer analysis of PV integrated modified greenhouse dryer", Renew. Energy, 121, 53-65. https://doi.org/10.1016/j.renene.2018.01.017.
  15. Deeto, S., Thepa, S., Monyakul, V. and Songprakorp, R. (2017), "The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification", Renew. Energy, 115, 954-968. https://doi.org/10.1016/j.renene.2017.09.009.
  16. Dhanore, R.T. and Jibhakate, Y.M. (2014), "A solar tunnel dryer for drying red chilly as an agricultural product", Int. J. Eng. Res. Technol., 3, 310-314.
  17. ELkhadraoui, A., Kooli, S. and Farhat, A. (2015), "Study on effectiveness of mixed mode solar greenhouse dryer for drying of red pepper", Int. J. Sci Res. Eng. Technol., 3(2), 143-146.
  18. ELkhadraoui, A., Kooli, S., Hamdi, I. and Farhat, A. (2015), "Experimental investigation and economic evaluation of a new mixed mode solar greenhouse dryer for drying of red pepper and grape", Renew. Energy, 77, 1-8. https://doi.org/10.1016/j.renene.2014.11.090.
  19. Eltawil, M.A., Azam, M.M. and Alghannam, A.O. (2018), "Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis)", J. Clean. Prod., 181, 352-364. https://doi.org/10.1016/j.jclepro.2018.01.229.
  20. Eltawil, M.A., Azam, M.M. and Alghannam, A.O. (2018), "Solar PV powered mixed-mode tunnel dryer for drying potato chips", Renew. Energy,116, 594-605. https://doi.org/10.1016/j.renene.2017.10.007.
  21. Fudholi, A., Mat, S., Basri, D.F., Ruslan Mohd, H. and Kamaruzzaman, S. (2016), "Performances analysis of greenhouse solar dryer with heat exchanger", Contemp. Eng. Sci., 9(3), 135-144. http://dx.doi.org/10.12988/ces.2016.512322.
  22. Fudholi, A., Yendra, R., Basri, D.F., Ruslan Mohd, H. and Kamaruzzaman, S. (2016), "Energy and exergy analysis of hybrid solar drying system", Contemp. Eng. Sci., 9(5), 215-223. http://dx.doi.org/10.12988/ces.2016.512323.
  23. Hamdani, Rizal, T.A. and Muhammad, Z. (2018), "Fabrication and testing of hybrid solar-biomass dryer for drying fish", Case Stud. Therm. Eng., 12, 489-496. https://doi.org/10.1016/j.csite.2018.06.008.
  24. Hossain, M.A. and Bala, B.K. (2007), "Drying of hot chilli using solar tunnel drier", Solar Energy, 81, 85-92. https://doi.org/10.1016/j.solener.2006.06.008.
  25. Jain, D. (2005), "Modeling the performance of greenhouse with packed bed thermal storage on crop drying application", J. Food Eng., 71, 170-178. https://doi.org/10.1016/j.jfoodeng.2004.10.031.
  26. Jairaj, K.S., Singh, S.P. and Srikant, K. (2009), "A review of solar dryers developed for grape drying", Solar Energy, 83, 1698-1712. https://doi.org/10.1016/j.solener.2009.06.008.
  27. Janjai, S. (2012), "A greenhouse type solar dryer for small-scale dried food industries: development and dissemination", Int. J. Energy Environ., 3(3), 383-398.
  28. Janjai, S., Khamvongsa, V. and Bala, B.K. (2007), "Development, design, and performance of a pv ventilated greenhouse dryer", Int. Energy J., 8, 249-258.
  29. Jitjack, K., Thepa, S., Sudaprasert, K. and Namprakai, P. (2016), "Improvement of a rubber drying greenhouse with a parabolic cover and enhanced panels", Energy Build., 124, 178-193. https://doi.org/10.1016/j.enbuild.2016.04.030.
  30. Kaewkiew, J., Nabnean, S. and Janjai, S. (2012), "Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand", Procedia Eng., 32, 433-439. https://doi.org/10.1016/j.proeng.2012.01.1290.
  31. Kiyan, M., Bingol, E., Melikoglu, M. and Albostan, A. (2013), "Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink", Energy Conversion Manage., 72, 147-155. https://doi.org/10.1016/j.enconman.2012.09.036.
  32. Koyuncu, T., Tosun, I. and Pinar, Y. (2007), "Drying characteristics and heat energy requirement of cornelian cherry fruits (Cornus mas L.)", J. Food Eng., 78(2), 735-739. https://doi.org/10.1016/j.jfoodeng.2005.09.035.
  33. Kumar, A. and Tiwari, G.N. (2007), "Effect of mass on convective mass transfer coefficient during open sun and greenhouse drying of onion flakes", J. Food Eng., 79(4), 1337-1350. https://doi.org/10.1016/j.jfoodeng.2006.04.026.
  34. Kumar, A., Prakash, O., Kaviti, A. and Tomar, A. (2013), "Experimental analysis of greenhouse dryer in no-load conditions", J. Environ. Res. Dev., 7(4), 1399-1406.
  35. Mehta, P., Samaddar, S., Patel, P., Markam, B. and Maiti, S. (2018), "Design and performance analysis of a mixed mode tent-type solar dryer for fish-drying in coastal areas" Solar Energy, 170, 671-681. https://doi.org/10.1016/j.solener.2018.05.095.
  36. Morad, M.M., El-Shazly, M.A., Wasfy, K.I. and El-MaghawryHend, A.M. (2017), "Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants", Renew. Energy, 101, 992-1004. https://doi.org/10.1016/j.renene.2016.09.042.
  37. Nayak, S., Kumar, A., Mishra, J. and Tiwari, G.N. (2011), "Drying and testing of mint (menthapiperita) by a hybrid photovoltaic-thermal (PVT)-based greenhouse dryer", Drying Technol., 29(9), 1002-1009. https://doi.org/10.1080/07373937.2010.547265.
  38. Nayak, S., Kumar, A., Singh, A.K. and Tiwari, G.N. (2013), "Energy matrices analysis of hybrid PVT greenhouse dryer by considering various silicon and non-silicon PV modules", Int. J. Sustain. Energy, 33(2), 336-348. https://doi.org/10.1080/14786451.2012.751914.
  39. Panwar, N.L., Kaushik, S.C. and Kothari, S. (2013), "Thermal modeling and experimental validation of solar tunnel dryer: a clean energy option for drying surgical cotton", Int. J. Low-Carbon Technol., 11(1), 16-28. https://doi.org/10.1093/ijlct/ctt053.
  40. Patil, R. and Gawande, R. (2016), "A review on solar tunnel greenhouse drying system", Renew. Sust. Energy Rev., 56, 196-214. https://doi.org/10.1016/j.rser.2015.11.057.
  41. Prakash, O. and Kumar, A. (2013), "Historical review and recent trends insolar drying systems", Int. J. Green Energy, 10(7), 690-738. https://doi.org/10.1080/15435075.2012.727113.
  42. Prakash, O. and Kumar, A. (2014), "Performance evaluation of greenhouse dryer with opaque north wall", Heat Mass Transfer, 50(4), 493-500. https://doi.org/10.1007/s00231-013-1256-2.
  43. Prakash, O. and Kumar, A. (2014), "Thermal performance evaluation of modified active greenhouse dryer", J. Build. Phys., 37(4), 395-402. https://doi.org/10.1177%2F1744259113496413. https://doi.org/10.1177/1744259113496413
  44. Prakash, O., Kumar, A. and Laguri V. (2016), "Performance of modified greenhouse dryer with thermal energy storage", Energy Reports, 2, 155-162. https://doi.org/10.1016/j.egyr.2016.06.003.
  45. Ramos Inês N., Teresa, R.S.B. and Silva, C.L.M. (2015), "Simulation of solar drying of grapes using an integrated heat and mass transfer model", Renew. Energy, 81, 896-902. https://doi.org/10.1016/j.renene.2015.04.011.
  46. Rathore, N.S. and Panwar, N.L. (2010) "Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying", Appl. Energy, 87(8), 2764-2767. https://doi.org/10.1016/j.apenergy.2010.03.014.
  47. Sallam, Y.I., Aly, M.H., Nassar, A.F. and Mohamed, E.A. (2015), "Solar drying of whole mint plant under natural and forced convection", J. Adv. Res., 6(2), 171-178. https://doi.org/10.1016/j.jare.2013.12.001.
  48. Selvanayaki, S. and Sampath kumar, K. (2017), "Techno-economic analysis of solar dryers", Green Energy Technol., 463-493. https://doi.org/10.1016/j.jare.2013.12.001.
  49. Semple, L., Carriveau, R. and Ting, D.S.K. (2017), "A techno-economic analysis of seasonal thermal energy storage forgreenhouse applications", Energy Build., 154, 175-187. https://doi.org/10.1016/j.enbuild.2017.08.065.
  50. Sethi, V.P. and Arora, S. (2009), "Improvement in greenhouse solar drying using inclined north wall reflection", Solar Energy, 83, 1472-1484. https://doi.org/10.1016/j.solener.2009.04.001.
  51. Sevda, M.S. and Rathore, N.S. (2010), "Performance evaluation of the semi cylindrical solar tunnel dryer for drying handmade paper", J. Renew. Sust. Energy, 2(1), 1-18. https://doi.org/10.1063/1.3302139.
  52. Shrivastava, V. and Kumar, A. (2016), "Experimental investigation on the comparison of fenugreek drying in an indirect solar dryer and under open sun", Heat Mass Transfer, 52(9), 1963-1972. https://doi.org/10.1007/s00231-015-1721-1.
  53. Singh, P., Shrivastava, V. and Kumar, A. (2018), "Recent developments in greenhouse solar drying: A review", Renew. Sust. Energy Rev., 82, 3250-3262. https://doi.org/10.1016/j.rser.2017.10.020.
  54. Tiwari, S., Tiwari, G.N. and Al-Helal, I.M. (2016), "Performance analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer", Solar Energy, 133, 421-428. https://doi.org/10.1016/j.solener.2016.04.033.
  55. Vijayavenkataraman, S., Iniyan, S. and Goic, R. (2012), "A review of solar drying technologies", Renew. Sust. Energy Rev., 16, 2652-2670. https://doi.org/10.1016/j.rser.2012.01.007.