References
- X. Li, P. Wang, Z. Liu, J. Peng, C. Shi, W. Hu, Z. Jiang, and B. Liu, Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells, J. Power Sources, 393, 99-107 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.011
- C. Y. Wong, W. Y. Wong, K. Ramya, M. Khalid, K. S. Loh, W. R. W. Daud, K. L. Lim, R. Walvekar, and A. A. H. Kadhum, Additives in proton exchange membranes for low and high temperature fuel cell applications: A review, Int. J. Hydrogen Energy, 44, 6116-6135 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.084
- T. Y. Son, T. H. Kim, H. J. Kim, and S. Y. Nam, Problems and solutions of anion exchange membranes for anion exchange membrane fuel cell (AEMFC), Appl. Chem. Eng., 29, 489-496 (2018). https://doi.org/10.14478/ace.2018.1074
- S. W. Chuang, S. L. C. Hsu, and Y. H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells, J. Membr. Sci., 305, 353-363 (2007). https://doi.org/10.1016/j.memsci.2007.08.033
- Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, PBI-based polymer membranes for high temperature fuel cells - Preparation, characterization and fuel cell demonstration, Fuel Cells, 4, 147-159 (2004) https://doi.org/10.1002/fuce.200400020
- X. Tian, S. Wang, J. Li, F. Liu, X. Wang, H. Chen, D. Wang, H. Ni, and Z. Wang, Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications, Appl. Surf. Sci., 465, 332-339 (2019). https://doi.org/10.1016/j.apsusc.2018.09.170
- M. R. Berber and N. Nakashima, Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions, J. Membr. Sci., 591, 117354 (2019). https://doi.org/10.1016/j.memsci.2019.117354
- G. J. Dahe, R. P. Singh, K. W. Dudeck, D. Yang, and K. A. Berchtold, Influence of non-solvent chemistry on polybenzimidazole hollow fiber membrane preparation, J. Membr. Sci., 577, 91-103 (2019). https://doi.org/10.1016/j.memsci.2019.02.001
- S. K. Kim, T. Ko, K. Kim, S. W. Choi, J. O. Park, K. H. Kim, C. Pak, H. Chang, and J. C. Lee, Poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] and poly[6-fluoro-3-(pyridin-2-yl)-3,4-dihydro-2H-benzoxazine] based polymer electrolyte membranes for fuel cells at elevated temperature, Macromol. Res., 20, 1181-1190 (2012). https://doi.org/10.1007/s13233-012-0175-2
- Q. X. Wu, Z. F. Pan, and L. An, Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications, Renew. Sustain. Energy Rev., 89, 168-183 (2018). https://doi.org/10.1016/j.rser.2018.03.024
- Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci., 34, 449-477 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.003
- A. Vassiliev, A. K. Reumert, J. O. Jensen, and D. Aili, Durability and degradation of vapor-fed direct dimethyl ether high temperature polymer electrolyte membrane fuel cells, J. Power Sources, 432, 30-37 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.062
- J. Kerres and V. Atanasov, Cross-linked PBI based high temperature membranes: Stability, conductivity and fuel cell performance, Int. J. Hydrogen Energy, 40, 14723-14735 (2015). https://doi.org/10.1016/j.ijhydene.2015.08.054
- L. Wang, Z. Liu, J. Ni, M. Xu, C. Pan, D. Wang, D. Liu, and L. Wang, Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells, J. Membr. Sci., 572, 350-357 (2019). https://doi.org/10.1016/j.memsci.2018.10.083
- H. Namazi and H. Ahmadi, Novel proton conducting membranes based on butylsulfonated poly[2,2'-(m-pyrazolidene)-5,5'-bibenzimidazole] (BS-PPBI): Proton conductivity, acid doping and water uptake properties, J. Membr. Sci., 383, 280-288 (2011). https://doi.org/10.1016/j.memsci.2011.08.065
- S. W. Choi, J. O. Park, C. Pak, K. H. Choi, J. C. Lee, and H. Chang, Design and synthesis of cross-linked copolymer membranes based on poly(benzoxazine) and polybenzimidazole and their application to an electrolyte membrane for a high-temperature PEM fuel cell, Polymers, 5, 77-111 (2013). https://doi.org/10.3390/polym5010077
- X. Wang, S. Wang, C. Liu, J. Li, F. Liu, X. Tian, H. Chen, T. Mao, J. Xu, and Z. Wang, Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs, Electrochim. Acta, 283, 691-698 (2018). https://doi.org/10.1016/j.electacta.2018.06.197
- T. T. Ou, H. Chen, B. Hu, H. Zheng, W. Li, and Y. Wang, A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 43, 12337-12345 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.166
- S. K. Kim, S. W. Choi, W. S. Jeon, J. O. Park, T. Ko, H. Chang, and J. C. Lee, Cross-linked benzoxazine-benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature, Macromolecules, 45, 1438-1446 (2012). https://doi.org/10.1021/ma202694p
- S. K. Kim, K. H. Kim, J. O. Park, K. Kim, T. Ko, S. W. Choi, C. Pak, H. Chang, and J. C. Lee, Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole), J. Power Sources, 226, 346-353 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.019
- L. Wang, Z. Liu, Y. Liu, and L. Wang, Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells, J. Membr. Sci., 583, 110-117 (2019). https://doi.org/10.1016/j.memsci.2019.04.030
- H. Chen, S. Wang, J. Li, F. Liu, X. Tian, X. Wang, T. Mao, J. Xu, and Z. Wang, Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications, J. Taiwan Inst. Chem. Eng., 95, 185-194 (2019). https://doi.org/10.1016/j.jtice.2018.06.036
- N. Nambi Krishnan, A. Konovalova, D. Aili, Q. Li, H. S. Park, J. H. Jang, H. J. Kim, and D. Henkensmeier, Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells, J. Membr. Sci., 588, 117218 (2019). https://doi.org/10.1016/j.memsci.2019.117218
- H. L. Lin, C. R. Hu, S. W. Lai, and T. L. Yu, Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells, J. Membr. Sci., 389, 399-406 (2012). https://doi.org/10.1016/j.memsci.2011.11.005
- M. Niu, C. Zhang, G. He, F. Zhang, and X. Wu, Pendent piperidinium-functionalized blend anion exchange membrane for fuel cell application, Int. J. Hydrogen Energy, 44, 15482-15493 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.172
- M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang, Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes, Int. J. Hydrogen Energy, 41, 12069-12081 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.227
- M. Won, S. Kwon, and T. H. Kim, High performance blend membranes based on sulfonated poly(arylene ether sulfone) and poly-(p-benzimidazole) for PEMFC applications, J. Ind. Eng. Chem., 29, 104-111(2015). https://doi.org/10.1016/j.jiec.2015.03.022
- N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J. H. Jang, H. J. Kim, S. W. Nam, and D. Henkensmeier, Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells, J. Membr. Sci., 544, 416-424 (2017). https://doi.org/10.1016/j.memsci.2017.09.049
-
M. S. Shin, D. E. Kim, and J. S. Park, Preparation and characterizations of poly(arylene ether sulfone)/
$SiO_2$ composite membranes for polymer electrolyte fuel cell, Membr. J., 27, 182-188 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.182 -
C. Lee, H. Na, Y. Jeon, H. J. Hwang, H. J. Kim, I. Mochida, S. H. Yoon, J. I. Park, and Y. G. Shul, Poly(ether imide) nanofibrous web composite membrane with
$SiO_2$ /heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells, J. Ind. Eng. Chem., 74, 7-13 (2019). https://doi.org/10.1016/j.jiec.2019.01.034 - Y. Ozdemir, N. Uregen, and Y. Devrim, Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells, Int. J. Hydrogen Energy, 42, 2648-2657 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.132
- X. Zhang, Q. Liu, L. Xia, D. Huang, X. Fu, R. Zhang, S. Hu, F. Zhao, X. Li, and X. Bao, Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range, J. Membr. Sci., 574, 282-298 (2019). https://doi.org/10.1016/j.memsci.2018.12.085
- P. Muthuraja, S. Prakash, V. M. Shanmugam, S. Radhakrsihnan, and P. Manisankar, Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: Synthesis and characterizations, Int. J. Hydrogen Energy, 43, 4763-4772 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.010
- S. Singha, R. Koyilapu, K. Dana, and T. Jana, Polybenzimidazole-clay nanocomposite membrane for PEM fuel cell: Effect of organomodifier structure, Polymer, 167, 13-20 (2019). https://doi.org/10.1016/j.polymer.2019.01.066
- Y. Lv, Z. Li, M. Song, P. Sun, X. Yin, and S. Wang, Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes, React. Funct. Polym., 137, 57-70 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.01.014
-
M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-
$Fe_2TiO_5$ nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC), Int. J. Hydrogen Energy, 41, 2896-2910 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.100 - P. Mustarelli, E. Quartarone, S. Grandi, A. Carollo, and A. Magistris, Polybenzimidazole-based membranes as a real alternative to nafion for fuel cells operating at low temperature, Adv. Mater., 20, 1339-1343 (2008). https://doi.org/10.1002/adma.200701767
- A. A. Lysova, I. A. Stenina, A. O. Volkov, I. I. Ponomarev, and A. B. Yaroslavtsev, Proton conductivity of hybrid membranes based on polybenzimidazoles and surface-sulfonated silica, Solid State Ionics, 329, 25-30 (2019). https://doi.org/10.1016/j.ssi.2018.11.012
- E. Abouzari Lotf, M. Zakeri, M.M. Nasef, M. Miyake, P. Mozarmnia, N.A. Bazilah, N.F. Emelin, and A. Ahmad, Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells, J. Power Sources, 412, 238-245 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.057
-
N. N. Krishnan, S. Lee, R. V. Ghorpade, A. Konovalova, J. H. Jang, H. J. Kim, J. Han, D. Henkensmeier, and H. Han, Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated
$TiO_2$ as both filler and crosslinker, and their use in the HT-PEM fuel cell, J. Membr. Sci., 560, 11-20 (2018). https://doi.org/10.1016/j.memsci.2018.05.006
Cited by
- Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies—A Review vol.25, pp.7, 2019, https://doi.org/10.3390/molecules25071712
- In situ synthesis of star copolymers consisting of a polyhedral oligomeric silsesquioxane core and poly(2,5‐benzimidazole) arms for high‐temperature proton exchange membrane fuel cells vol.44, pp.11, 2019, https://doi.org/10.1002/er.5571
- Crosslinked Pore-Filling Anion Exchange Membrane Using the Cylindrical Centrifugal Force for Anion Exchange Membrane Fuel Cell System vol.12, pp.11, 2019, https://doi.org/10.3390/polym12112758