DOI QR코드

DOI QR Code

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation

유도형 정전선별에서 ASR 입자의 궤적모사

  • Kim, Beom-uk (Department of Energy & Resources Engineering, Chosun University) ;
  • Park, Chul-hyun (Department of Energy & Resources Engineering, Chosun University)
  • 김범욱 (조선대학교 에너지자원공학과) ;
  • 박철현 (조선대학교 에너지자원공학과)
  • Received : 2019.12.09
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

폐자동차파쇄잔재물(Automobile Shredder Residue, ASR)은 폐차 재활용시 발생되는 최종 폐기물로써 파분쇄, 공기분급, 자력선별 및 정전선별법과 같은 자원처리 공정을 이용하여 선별할 수 있다. 본 연구에서는 유도형 정전선별기를 이용하여 A SR의 선별효율 향상 및 예측을 위한 전도체(구리) 및 비전도체(유리)의 궤적분석이 수행되었다. 전도체의 궤적분석 결과, 0.5와 0.25 mm 조립자 구리선의 모사궤적은 실제궤적과 거의 일치하였다. 반면 0.06 mm 구리선의 관찰궤적은 (-) 전극으로 편향되었다. 이는 입자특성 및 상대습도에 의한 전하량의 영향 때문으로 판단된다. 비전도체의 경우 절연체 유리의 관찰궤적이 전도성 입자들의 궤적과 유사한 특징을 보이면서 (-) 전극으로 편향되었다. 현미경, SEM & EDS 분석결과 유리표면에서 미립의 철과 전도성 유기물과 같은 이물질 발견되었다. 이와 같이 이물질이 부착된 유리는 ASR 재활용을 위한 정전선별시 비철금속의 선별효율을 저하시키는 것으로판단된다. 향후 연구에서 유리에 부착된 이물질 제거를 위한 전처리 기술개발 및 개선된 궤적모사 연구가 요구된다.

Keywords

References

  1. Nourreddine, M., 2007 : Recycling of auto shredder residue. Journal of Hazardous Materials, 139, pp.481-490. https://doi.org/10.1016/j.jhazmat.2006.02.054
  2. Cossu, R. and Lai, T., 2015 : Automotive shredder residue (asr) management: An overview. Waste Management, 45, pp.143-151. https://doi.org/10.1016/j.wasman.2015.07.042
  3. Baek, S.-H., Jeon, H.-S., Lee, E.-S. et al., 2014 : Present condition of end-of-life vehicles & slf/asr recycling in europe. Journal of the Korean Institute of Resources Recycling, 23, pp.58-68.
  4. Passarini, F., Ciacci, L., Santini, A. et al., 2014 : Aluminium flows in vehicles: Enhancing the recovery at end-of-life. Journal of Material Cycles and Waste Management, 16, pp.39-45. https://doi.org/10.1007/s10163-013-0175-0
  5. Santini, A., Passarini, F., Vassura, I. et al., 2012 : Auto shredder residue recycling: Mechanical separation and pyrolysis. Waste Management, 32, pp.852-858. https://doi.org/10.1016/j.wasman.2011.10.030
  6. Miller, L., Soulliere, K., Sawyer-Beaulieu, S. et al., 2014 : Challenges and alternatives to plastics recycling in the automotive sector. Materials, 7, pp.5883-5902. https://doi.org/10.3390/ma7085883
  7. Directive, E. U., 2000 : 53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles. Official Journal of the European Union, L Series 21, pp.34-42.
  8. Ministry of envrionment of korea, Act on Resource Circulation of Electrical and Electronic Equipment and Vehicle, http://www.law.go.kr/lsInfoP.do?lsiSeq=188594&urlMode=engLsInfoR&viewCls=engLsInfoR#0000 December.10.2019
  9. Inculet, I. I., 1984 : Electrostatic mineral separation. Research Studies Press.
  10. De Araujo, M. C. P. B., Chaves, A. P., Espinosa, D. C. R., and Tenorio, J. A. S. 2008 : Electronic scraps-recovering of valuable materials from parallel wire cables. Waste management, 28, pp.2177-2182. https://doi.org/10.1016/j.wasman.2007.09.019
  11. Dias, P., Schmidt, L., Gomes, L. B. et al., 2018 : Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. Journal of Sustainable Metallurgy, 4, pp.176-186. https://doi.org/10.1007/s40831-018-0173-5
  12. Li, J. and Xu, Z., 2019 : Compound tribo-electrostatic separation for recycling mixed plastic waste Journal of Hazardous Materials, 367, pp.43-49. https://doi.org/10.1016/j.jhazmat.2018.12.017
  13. Dascalescu, L., Mizuno, A., Tobazeon, R. et al., 1995 : Charges and forces on conductive particles in roll-type corona-electrostatic separators. IEEE Transactions on Industry Applications, 31, pp.947-956. https://doi.org/10.1109/28.464503
  14. Vlad, S., Iuga, A., and Dascalescu, L., 2000 : Modelling of conducting particle behaviour in plate-type electrostatic separators. Journal of Physics D: Applied Physics, 33, pp.127. https://doi.org/10.1088/0022-3727/33/2/306
  15. Vlad, S., Mihailescu, M., Rafiroiu, D. et al., 2000 : Numerical analysis of the electric field in plate-type electrostatic separators. Journal of Electrostatics, 48, pp.217-229. https://doi.org/10.1016/S0304-3886(99)00067-4
  16. Vlad, S., Urs, A., Iuga, A. et al., 2001 : Premises for the numerical computation of conducting particle trajectories in plate-type electrostatic separators. Journal of Electrostatics, 51, pp.259-265. https://doi.org/10.1016/S0304-3886(01)00084-5
  17. Vlad, S., Iuga, A., and Dascalescu, L., 2003 : Numerical computation of conducting particle trajectories in platetype electrostatic separators. IEEE Transactions on Industry applications, 39, pp.66-71. https://doi.org/10.1109/TIA.2002.807218
  18. Caron, A. and Dascalescu, L., 2004 : Numerical modeling of combined corona-electrostatic fields. Journal of Electrostatics, 61, pp.43-55. https://doi.org/10.1016/j.elstat.2003.12.002
  19. Labair, H., Touhami, S., Tilmatine, A. et al., 2017 : Study of charged particles trajectories in free-fall electrostatic separators. Journal of Electrostatics, 88, pp.10-14. https://doi.org/10.1016/j.elstat.2017.01.010
  20. Richard, G., Salama, A., Medles, K. et al., 2017 : Experimental and numerical study of the electrostatic separation of two types of copper wires from electric cable wastes. IEEE Transactions on Industry Applications, 53(4), pp.3960-3969. https://doi.org/10.1109/TIA.2017.2677883
  21. Richard, G., Touhami, S., Zeghloul, T. et al., 2017 : Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator. Waste Management, 60, pp.112-122. https://doi.org/10.1016/j.wasman.2016.06.036
  22. Li, J., Lu, H., Xu, Z., et al., 2008 : A model for computing the trajectories of the conducting particles from waste printed circuit boards in corona electrostatic separators. Journal of Hazardous Materials, 151, pp.52-57. https://doi.org/10.1016/j.jhazmat.2007.05.045
  23. Li, J., Xu, Z., and Zhou, Y., 2008 : Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator Journal of Hazardous Materials, 153, pp.1308-1313. https://doi.org/10.1016/j.jhazmat.2007.09.089
  24. Lu, H., Li, J., Guo, J. et al., 2008 : Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board. Journal of materials processing technology, 197, pp.101-108. https://doi.org/10.1016/j.jmatprotec.2007.06.004
  25. Wu, J., Li, J., and Xu, Z., 2009 : An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE. Journal of Hazardous Materials, 167, pp.489-493. https://doi.org/10.1016/j.jhazmat.2009.01.005
  26. N.-J. Felici, 1966 : Forces et charges de petits objets en contact avec une tlectrode affectke d'un champ Clectrique, Revue GCnCrale de L'tlectricitt, pp.1145-1160.
  27. Angelov, A., Vereshyagin, I., and Yershov, V., 1983 : Physical basis at electrostatic separation. Moscow Geology Press, Moscow.