• Title/Summary/Keyword: Induction electrostatic separation

Search Result 4, Processing Time 0.018 seconds

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

Simulation on the PCB Particle Trajectories in Corona-discharge Electrostatic Separator (코로나 방전 정전선별기 내 PCB 입자의 이동궤도 시뮬레이션)

  • Han, Seongsoo;Park, Seungsoo;Kim, Seongmin;Park, Jaikoo
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.30-39
    • /
    • 2014
  • The trajectories of PCB(Printed Circuit Board) particles in the corona discharge electrostatic separation was simulated. The PCB particles are prepared by crushing bare board, which disassembled from electronic components, consist mostly of copper and FR-4(Flame Retardant Level-4) Firstly, a model was established for calculating of detachment points of PCB particles from the rotating electrode in separator. The model of detachment points was derived from equilibrium of force such as gravity force, centrifugal force, electrostatic force. The trajectories of particles after detachment was calculated by acceleration derived from time-integrating method of motion equation. In this simulation, particle size, supplied voltage, rotation speed of rotating roll electrode and angle of induction electrode were adopted as variables. While the trajectories of FR-4 particles were affected by all variables, rotation speed of rotating roll electrode was dominant variables affecting trajectories of copper particles.

Separation of High Purity and High Carbon Fly Ash by Electrostatic Method (정전선별법에 의한 고순도 석탄회와 고탄소 석탄회의 분리)

  • 한오형;깅현호
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2003
  • In 2001, Korea produced a total of 4.91 million metric tons of fly ash, approximately 63.3% of which was recycled. Almost all of the recycled fly ash are used in concrete mixtures and cement industry. Therefore, in order to develop a new usage to increase the utilization of the fly ash, conductive induction was used in this research rather than triboelectrostatic. By applying conductive induction, we could verify the possibility of obtaining high purity fly ash below 1%LOI and high carbon fly ash over 70%LOI from raw fly ash. In this test, the potential difference between the two electrodes was conducted by changing the range of 8 to 16 kV.

Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification (액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가)

  • Park, Sunyoung;Kang, Hyungyu;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.