DOI QR코드

DOI QR Code

챔퍼가 적용된 타공판의 압력 강하 특성에 대한 연구

Effects of Chamfered Perforated Plate on Pressure Loss Characteristics

  • You, Kyeongsik (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Lee, Hyungyu (Department of Mechanical Engineering, Hanyang University) ;
  • Cho, Jinsoo (School of Mechanical Engineering, Hanyang University)
  • 투고 : 2019.09.18
  • 심사 : 2019.10.28
  • 발행 : 2019.11.01

초록

본 연구에서 챔퍼가 적용된 타공판의 압력 강하특성에 대한 연구를 진행하였다. 타공판 홀의 입구와 출구에 각각 챔퍼를 적용하였다. 타공판의 패턴이 압력 강하특성에 미치는 영향에 대하여 관찰하였다. 타공판 홀의 입구와 출구에 챔퍼 각도를 변경해 가며 압력 강하 특성을 비교하였다. 레이놀즈 수에 따른 강하특성을 확인하였다. 타공판 홀 입구에 적용된 챔퍼의 각도가 증가함에 따라 압력강하계수가 감소하였지만 특정 각도 이후에서 압력강하계수가 증가하는 것을 확인하였다. 타공판홀 출구에 적용된 챔퍼 형상의 경우 특정 각도와는 상관없이 압력 강하계수가 증가하였다. 동일한 개공률의 타공판에서 삼각 및 사각 패턴에 따른 압력 강하특성은 동일하였다. 본 연구에서 설정한 레이놀즈 수 범위 내에서 압력 강하특성에 대한 레이놀즈 수의 영향은 없는 것으로 확인하였다.

Effects of chamfered perforated plate on pressure loss characteristics were studied with CFD analysis. Both inlet chamfer angle and outlet chamfer angle were considered. Perforated patterns were compared by pressure loss coefficient in certain porosity and Reynolds number. Reynolds number effects were studied for several chamfer angles and plate thickness. As the inlet chamfer angle was increased, the pressure loss coefficient was decreased until the certain angle and reversed to increase. In the outlet chamfered shape cases, the pressure loss coefficient was increased with chamfer angle. Effects of pattern shapes and Reynolds number on pressure loss characteristics were negligible with different chamfer angles and thickness studied in this paper.

키워드

참고문헌

  1. Idelchik, I. E., and Steinberg, M. O., Handbook of hydraulic resistance, 3rd Ed., CRC Press, 2014, pp. 503-518.
  2. Gan, G., and Riffat, S. B., "Pressure loss characteristics of orifice and perforated plates," Experimental Thermal and Fluid Science, Vol. 14, No. 2, 1997, pp. 160-165. https://doi.org/10.1016/S0894-1777(96)00041-6
  3. Guo, B. Y., Hou, Q. F., Yu, A. B., Li, L. F., and Guo, J., "Numerical modelling of the gas flow through perforated plates," Chemical Engineering Research and Design, Vol. 91, No. 3, 2013, pp. 403-408. https://doi.org/10.1016/j.cherd.2012.10.004
  4. Barros Filho, J. A., Santos, A. A. C., Navarro, M. A., and Jordao, E., "Effect of chamfer geometry on the pressure drop of perforated plates with thin orifices," Nuclear Engineering and Design, Vol. 284, 2015, pp. 74-79. https://doi.org/10.1016/j.nucengdes.2014.12.009
  5. Wanzheng, A., "Energy dissipation characteristics of sharp-edged orifice plate," Advances in Mechanical Engineering, Vol. 7, No. 8, 2015.
  6. Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications," American Institute of Aeronautics and Astronautics, Vol. 32, No. 8, 1994, pp. 1598-1605. https://doi.org/10.2514/3.12149
  7. Li, D., Zhang, F., Long, J., and Luo, D., "The numerical simulation of a rectifying device with a perforated plate," Flow Measurement and Instrumentation, Vol. 38, 2014, pp. 27-35. https://doi.org/10.1016/j.flowmeasinst.2014.05.018
  8. Smith Jr, P. L., and Van Winkle, M., "Discharge coefficients through perforated plates at reynolds numbers of 400 to 3,000," American Institute of Chemical Engineers Journal, Vol. 4, No. 3, 1958, pp. 266-268. https://doi.org/10.1002/aic.690040306