DOI QR코드

DOI QR Code

Identification of Differentially Expressed Genes by cDNA-AFLP in Magnaporthe oryzae

  • Received : 2019.11.24
  • Accepted : 2019.12.10
  • Published : 2019.12.31

Abstract

Analysis of differentially expressed genes has assisted discovery of gene sets involved in particular biological processes. The purpose of this study was to identify genes involved in appressorium formation in the rice blast fungus Magnaporthe oryzae via analysis of cDNA-amplified fragment length polymorphisms. Amplification of appressorial and vegetative mycelial cDNAs using 28 primer combinations generated over 200 differentially expressed transcript-derived fragments (TDFs). TDFs were excised from gels, re-amplified by PCR, cloned, and sequenced. Forty-four of 52 clones analyzed corresponded to 42 genes. Quantitative real-time PCR showed that expression of 23 genes was up-regulated during appressorium formation, one of which was the MCK1 gene that had been shown to be involved in appressorium formation. This study will be providing valuable resources for identifying the genes such as pathogenicity-related genes in M. oryzae.

Keywords

References

  1. Adachi, K. and Hamer, J. E. 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10: 1361-1374. https://doi.org/10.1105/tpc.10.8.1361
  2. Arroyo, J., Sarfati, J., Baixench, M. T., Ragni, E., Guillen, M., Rodriguez-Pena, J. M. et al. 2007. The GPI-anchored gas and Crh families are fungal antigens. Yeast 24: 289-296. https://doi.org/10.1002/yea.1480
  3. Chi, M.-H., Park, S.-Y., Kim, S. and Lee, Y.-H. 2009. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5: e1000401. https://doi.org/10.1371/journal.ppat.1000401
  4. Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009a. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46: 243-254. https://doi.org/10.1016/j.fgb.2008.11.010
  5. Choi, J. H., Kim, Y. and Lee, Y.-H. 2009b. Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J. Microbiol. Biotechnol. 19: 11-16. https://doi.org/10.4014/jmb.0804.268
  6. Ebbole, D. J. 2007. Magnaporthe as a model for understanding hostpathogen interactions. Annu. Rev. Phytopathol. 45: 437-456. https://doi.org/10.1146/annurev.phyto.45.062806.094346
  7. Eisendle, M., Oberegger, H., Zadra, I. and Haas, H. 2003. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 49: 359-375. https://doi.org/10.1046/j.1365-2958.2003.03586.x
  8. Hamer, J. E. and Talbot, N. J. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 1: 693-697. https://doi.org/10.1016/S1369-5274(98)80117-3
  9. Howard, R. J. and Valent, B. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50: 491-512. https://doi.org/10.1146/annurev.micro.50.1.491
  10. Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7: e1001335. https://doi.org/10.1371/journal.ppat.1001335
  11. Irie, T., Matsumura, H., Terauchi, R. and Saitoh, H. 2003. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol. Genet. Genomics 270: 181-189. https://doi.org/10.1007/s00438-003-0911-6
  12. Jeon, J., Goh, J., Yoo, S., Chi, M.-H., Choi, J., Rho, H.-S. et al. 2008. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol. Plant Microbe Interact. 21: 525-534. https://doi.org/10.1094/MPMI-21-5-0525
  13. Jeon, J., Park, S.-Y., Chi, M.-H., Choi, J., Park, J., Rho, H.-S. et al. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39: 561-565. https://doi.org/10.1038/ng2002
  14. Lee, I. H., Kumar, S. and Plamann, M. 2001. Null mutants of the neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol. Biol. Cell 12: 2195-2206. https://doi.org/10.1091/mbc.12.7.2195
  15. Lee, Y.-H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5: 693-700. https://doi.org/10.2307/3869811
  16. Levin, D. E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69: 262-291. https://doi.org/10.1128/MMBR.69.2.262-291.2005
  17. Liu, Z.-M. and Kolattukudy, P. E. 1999. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J. Bacteriol. 181: 3571-3577. https://doi.org/10.1128/JB.181.11.3571-3577.1999
  18. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  19. Lu, J.-P., Liu, T.-B. and Lin, F.-C. 2005. Identification of mature appressorium- enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiol. Lett. 245: 131-137. https://doi.org/10.1016/j.femsle.2005.02.032
  20. Mitchell, T. K. and Dean, R. A. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7: 1869-1878. https://doi.org/10.1105/tpc.7.11.1869
  21. Nguyen, Q. B., Kadotani, N., Kasahara, S., Tosa, Y., Mayama, S. and Nakayashiki, H. 2008. Systematic functional analysis of calciumsignalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol. Microbiol. 68: 1348-1365. https://doi.org/10.1111/j.1365-2958.2008.06242.x
  22. Oh, Y., Donofrio, N., Pan, H., Coughlan, S., Brown, D. E., Meng, S. et al. A. 2008. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol. 9: R85. https://doi.org/10.1186/gb-2008-9-5-r85
  23. Park, J., Park, B., Jung, K., Jang, S., Yu, K., Choi, J. et al. 2008. CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res. 36: D562-D571. https://doi.org/10.1093/nar/gkm758
  24. Park, S.-Y., Choi, J., Lim, S.-E., Lee, G.-W., Park, J., Kim, Y. et al. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog. 9: e1003350. https://doi.org/10.1371/journal.ppat.1003350
  25. Park, S.-Y., Jwa, N.-S., Chi, M.-H. and Lee, Y.-H. 2009. A fluorescencebased cDNA-AFLP method for identification of differentially expressed genes. Plant Pathol. J. 25: 184-188. https://doi.org/10.5423/PPJ.2009.25.2.184
  26. Patton-Vogt, J. L. and Henry, S. A. 1998. GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae. Genetics 149: 1707-1715. https://doi.org/10.1093/genetics/149.4.1707
  27. Remm, M., Storm, C. E. V. and Sonnhammer, E. L. L. 2001. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314: 1041-1052. https://doi.org/10.1006/jmbi.2000.5197
  28. Schrettl, M., Bignell, E., Kragl, C., Sabiha, Y., Loss, O., Eisendle, M. et al. 2007. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3: 1195-1207.
  29. Soanes, D. M., Chakrabarti, A., Paszkiewicz, K. H., Dawe, A. L. and Talbot, N. J. 2012. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 8: e1002514. https://doi.org/10.1371/journal.ppat.1002514
  30. Strange, R. N. and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43: 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839
  31. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57: 177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  32. Talbot, N. J., Mccafferty, H. R. K., Ma, M., Koore, K. and Hamer, J. E. 1997. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol. Mol. Plant Pathol. 50: 179-195. https://doi.org/10.1006/pmpp.1997.0081
  33. Thines, E., Weber, R. W. S. and Talbot, N. J. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12: 1703-1718. https://doi.org/10.2307/3871184
  34. Xu, J.-R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10: 2696-2706. https://doi.org/10.1101/gad.10.21.2696