References
- Adachi, K. and Hamer, J. E. 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10: 1361-1374. https://doi.org/10.1105/tpc.10.8.1361
- Arroyo, J., Sarfati, J., Baixench, M. T., Ragni, E., Guillen, M., Rodriguez-Pena, J. M. et al. 2007. The GPI-anchored gas and Crh families are fungal antigens. Yeast 24: 289-296. https://doi.org/10.1002/yea.1480
- Chi, M.-H., Park, S.-Y., Kim, S. and Lee, Y.-H. 2009. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5: e1000401. https://doi.org/10.1371/journal.ppat.1000401
- Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009a. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46: 243-254. https://doi.org/10.1016/j.fgb.2008.11.010
- Choi, J. H., Kim, Y. and Lee, Y.-H. 2009b. Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J. Microbiol. Biotechnol. 19: 11-16. https://doi.org/10.4014/jmb.0804.268
- Ebbole, D. J. 2007. Magnaporthe as a model for understanding hostpathogen interactions. Annu. Rev. Phytopathol. 45: 437-456. https://doi.org/10.1146/annurev.phyto.45.062806.094346
- Eisendle, M., Oberegger, H., Zadra, I. and Haas, H. 2003. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 49: 359-375. https://doi.org/10.1046/j.1365-2958.2003.03586.x
- Hamer, J. E. and Talbot, N. J. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 1: 693-697. https://doi.org/10.1016/S1369-5274(98)80117-3
- Howard, R. J. and Valent, B. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50: 491-512. https://doi.org/10.1146/annurev.micro.50.1.491
- Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7: e1001335. https://doi.org/10.1371/journal.ppat.1001335
- Irie, T., Matsumura, H., Terauchi, R. and Saitoh, H. 2003. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol. Genet. Genomics 270: 181-189. https://doi.org/10.1007/s00438-003-0911-6
- Jeon, J., Goh, J., Yoo, S., Chi, M.-H., Choi, J., Rho, H.-S. et al. 2008. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol. Plant Microbe Interact. 21: 525-534. https://doi.org/10.1094/MPMI-21-5-0525
- Jeon, J., Park, S.-Y., Chi, M.-H., Choi, J., Park, J., Rho, H.-S. et al. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39: 561-565. https://doi.org/10.1038/ng2002
- Lee, I. H., Kumar, S. and Plamann, M. 2001. Null mutants of the neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol. Biol. Cell 12: 2195-2206. https://doi.org/10.1091/mbc.12.7.2195
- Lee, Y.-H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5: 693-700. https://doi.org/10.2307/3869811
- Levin, D. E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69: 262-291. https://doi.org/10.1128/MMBR.69.2.262-291.2005
- Liu, Z.-M. and Kolattukudy, P. E. 1999. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J. Bacteriol. 181: 3571-3577. https://doi.org/10.1128/JB.181.11.3571-3577.1999
- Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Lu, J.-P., Liu, T.-B. and Lin, F.-C. 2005. Identification of mature appressorium- enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiol. Lett. 245: 131-137. https://doi.org/10.1016/j.femsle.2005.02.032
- Mitchell, T. K. and Dean, R. A. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7: 1869-1878. https://doi.org/10.1105/tpc.7.11.1869
- Nguyen, Q. B., Kadotani, N., Kasahara, S., Tosa, Y., Mayama, S. and Nakayashiki, H. 2008. Systematic functional analysis of calciumsignalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol. Microbiol. 68: 1348-1365. https://doi.org/10.1111/j.1365-2958.2008.06242.x
- Oh, Y., Donofrio, N., Pan, H., Coughlan, S., Brown, D. E., Meng, S. et al. A. 2008. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol. 9: R85. https://doi.org/10.1186/gb-2008-9-5-r85
- Park, J., Park, B., Jung, K., Jang, S., Yu, K., Choi, J. et al. 2008. CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res. 36: D562-D571. https://doi.org/10.1093/nar/gkm758
- Park, S.-Y., Choi, J., Lim, S.-E., Lee, G.-W., Park, J., Kim, Y. et al. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog. 9: e1003350. https://doi.org/10.1371/journal.ppat.1003350
- Park, S.-Y., Jwa, N.-S., Chi, M.-H. and Lee, Y.-H. 2009. A fluorescencebased cDNA-AFLP method for identification of differentially expressed genes. Plant Pathol. J. 25: 184-188. https://doi.org/10.5423/PPJ.2009.25.2.184
- Patton-Vogt, J. L. and Henry, S. A. 1998. GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae. Genetics 149: 1707-1715. https://doi.org/10.1093/genetics/149.4.1707
- Remm, M., Storm, C. E. V. and Sonnhammer, E. L. L. 2001. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314: 1041-1052. https://doi.org/10.1006/jmbi.2000.5197
- Schrettl, M., Bignell, E., Kragl, C., Sabiha, Y., Loss, O., Eisendle, M. et al. 2007. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3: 1195-1207.
- Soanes, D. M., Chakrabarti, A., Paszkiewicz, K. H., Dawe, A. L. and Talbot, N. J. 2012. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 8: e1002514. https://doi.org/10.1371/journal.ppat.1002514
- Strange, R. N. and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43: 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839
- Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57: 177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
- Talbot, N. J., Mccafferty, H. R. K., Ma, M., Koore, K. and Hamer, J. E. 1997. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol. Mol. Plant Pathol. 50: 179-195. https://doi.org/10.1006/pmpp.1997.0081
- Thines, E., Weber, R. W. S. and Talbot, N. J. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12: 1703-1718. https://doi.org/10.2307/3871184
- Xu, J.-R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10: 2696-2706. https://doi.org/10.1101/gad.10.21.2696