References
- X. Su and T.M. Khoshgoftaar, "A Survey of Collaborative Filtering Techniques," Advances in Artificial Intelligence, 2009. DOI:10.1155/2009/421425
- S. Du, H. Zhang, H. Xu, J. Yang, and O. Tu, "To Make the Travel Healthier: A New Tourism Personalized Route Recommendation Algorithm," Journal of Ambient Intelligence and Humanized Computing, Vol. 10, No. 9, pp. 3551-3562, 2019. DOI:10.1007/s12652-018-1081-z
- J. Gupta and J. Gadge, "Performance Analysis of Recommendation System based on Collaborative Filtering and Demographics," International Conference on Communication Information & Computing Technology, pp. 1-6, 2015. DOI: 10.1109/ICCICT.2015.7045675
- M. Aamir and M. Bhusry, “Recommendation System: State of the Art Approach,” International Journal Computer Applications, Vol. 120, No. 12, pp. 25-32, 2015. DOI: 10.5120/21281-4200
- M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, and M. Salehi, "Evaluating Collaborative Filtering Recommender Algorithms: A Survey," IEEE Access, Vol. 6, pp. 74003-74024, 2018. DOI: 10.1109/ACCESS.2018.2883742
- K.G. Saranya, G.S. Sadasivam, and M. Chandralekha, "Performance Comparison of Different Similarity Measures for Collaborative Filtering Technique," Indian Journal of Science and Technology, Vol. 9, No. 29, 2016. DOI: 10.17485/ijst/2016/v9i29/91060
- Z. Y. Hafshejani, M. Kaedi, and A. Fatemi, “Improving Sparsity and New User Problems in Collaborative Filtering by Clustering the Personality Factors,” Electronic Commerce Research, Vol. 18, No. 4, pp. 813-836, 2018. DOI: 10.1007/s10660-018-9287-x
- Koohi and K. Kiani, "A New Method to Find Neighbor Users that Improves the Performance of Collaborative Filtering," Expert Systems With Applications, Vol. 83, pp. 30-39, 2017. DOI: 10.1016/j.eswa.2017.04.027
- B. Zhu, R. Hurtado, J. Bobadilla, and F. Ortega, "An Efficient Recommender System Method based on the Numerical Relevances and the Non-numerical Structures of the Ratings," IEEE Access, Vol. 6, pp. 49935-49954, 2018. DOI: 10.1109/ACCESS.2018.2868464
- M. Li and K. Zheng, "A Collaborative Filtering Algorithm Combined with User Habits for Rating," International Conference on Logistics Engineering, Management and Computer Science, pp 1279-1282, 2015. DOI: 10.2991/lemcs-15.2015.255
- W. Wang, G. Zhang, and J. Lu, “Collaborative Filtering with Entropy-driven User Similarity in Recommender Systems,” International Journal of Intelligent Systems, Vol. 30, No. 8, pp. 854-870, 2015. DOI: 10.1002/int.21735
- S. Lee, "Using Entropy for Similarity Measures in Collaborative Filtering," Journal of Ambient Intelligence and Humanized Computing, Feb. 2019. DOI: 10.1007/s12652-019-01226-0
- G. Koutrica, B. Bercovitz, and H. Garcia, "FlexRecs: Expressing and Combining Flexible Recommendations," Proc. of the ACM SIGMOD Int'l Conf. on Management of Data, pp. 745-758, 2009.
- J. Bobadilla, F. Serradilla, and J. Bernal, “A New Collaborative Filtering Metric that Improves the Behavior of Recommender Systems,” Knowledge Based Systems, Vol. 23, No. 6, pp. 520-528, 2010. DOI: 10.1016/j.knosys.2010.03.009
- S. Lee, "Improving Jaccard Index for Measuring Similarity in Collaborative Filtering," Lecture Notes in Electrical Engineering, Vol. 424, pp. 799-806, 2017. DOI: 10.1007/978-981-10-4154-9_93
- M. Salehi, I. N. Kamalabadi, and M. B. Ghaznavi-Ghoushchi, "Attribute-based Collaborative Filtering using Genetic Algorithm and Weighted C-means Algorithm," International Journal of Business Information Systems, Vol. 13, No. 3, pp. 265-283, 2013. DOI: 10.1504/IJBIS.2013.054465
- F. Cacheda, V. Carneiro, D. Fernandez, and V. Formoso, “Comparison of Collaborative Filtering Algorithms: Limitations of Current Techniques and Proposals for Scalable, High-performance Recommender Systems,” ACM Transactions on the Web, Vol. 5, No. 1, pp. 1-33, 2011. DOI: 10.1145/1921591.1921593