DOI QR코드

DOI QR Code

SIFT Feature Based Digital Watermarking Method for VR Image

VR영상을 위한 SIFT 특징점 기반 디지털 워터마킹 방법

  • Moon, Won-Jun (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Seo, Young-Ho (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Dong-Wook (Department of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2019.09.30
  • Accepted : 2019.10.25
  • Published : 2019.11.30

Abstract

With the rapid development of the VR industry, many VR contents are produced and circulated, and the need for copyright protection is increasing. In this paper, we propose a method of embedding and extracting watermarks in consideration of VR production process. In embedding, SIFT is performed by selecting the region where distortion is minimized in VR production, and transformed into frequency domain using DWT and embedded into the QIM method. In extracting process, in order to correct the distortion in the projection process, the top and bottom regions are changed to different projection methods and some middle regions are rotated using 3DoF to extract the watermark. After this processing, extracted watermark has higher accuracy than the conventional watermark method, and the validity of the proposed watermark is shown by showing that the accuracy is maintained even in various attacks.

VR 산업의 급격한 발전에 따라 많은 VR 콘텐츠들이 제작 및 유통되면서 저작권 보호에 대한 필요성이 높아지고 있다. 본 논문에서는 VR 제작과정을 고려하여 워터마크를 삽입 및 추출하는 방법을 제안한다. 삽입에서는 VR 제작에서 왜곡이 최소화되는 영역을 선택하여 SIFT를 수행하고 DWT를 이용하여 주파수로 변환하여 QIM방식으로 삽입한다. 추출에서는 투영 과정에서의 왜곡을 보정하기 위해 위와 아래영역은 투영방법을 변경하고, 중간영역 중 일부는 3DoF를 이용하여 회전을 수행한 후 워터마크를 추출한다. 이에 대해 기존의 워터마크 방법을 적용했을 때보다 높은 정확도를 가지며 다양한 공격에서도 정확도가 유지되는 것을 보임으로 제안한 워터마크의 유효함을 확인한다.

Keywords

References

  1. X. Li, B. Xu, Y. Teng, Y. Ren, and Z. Hu, "Comparative Research of AR and VR Technology based on User Experience," ICMSE, Helsinki, Finland, pp.1820-1827, 2014 , http://dx.doi.org/10.1109/ICMSE.2014.6930456
  2. J. Cox, M. Miller, J. Bloom and T. Kalker, Digital watermarking and steganography, 2nd Ed., Elsevier, 2008.
  3. S. A. Parah, J. A. Sheikh, N. A. Loan, F. Ahad, and G. M. Bhat, "Utilizing neighborhood coefficient correlation: a new image watermarking technique robust to singular and hybrid attacks," Multidimensional Systems and Signal Processing, Vol.29, No.3, pp. 1095-1117, July 2018, http://dx.doi.org/10.1007/s11045-017-0490-z
  4. C. C. Lai, C. C. Tsai, "Digital Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition," IEEE Transactions on instrumentation and measurement, Vol.59, No.11, pp.3060-3063, Nov., 2010, http://dx.doi.org/10.1109/TIM.2010.2066770
  5. M. Agoyi, E. Celebi, and G. Anbarjafari, "A watermarking algorithm based on chirp z-transform, discrete wavelet transform, and singular value decomposition," Signal Image and Video Processing, Vol.9, No.3, pp.735-745, June, 2014 http://dx.doi.org/10.1007/s11760-014-0624-9
  6. T. H. Nguyen, D. M. Duong and D. A. Duong, "Robust and high capacity watermarking for image based on DWT-SVD," The 2015 IEEE RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future, Can Tho, Vietnam, pp.83-88, 2015, http://dx.doi.org/10.1109/RIVF.2015.7049879
  7. P. Rasti, G. Anbarjafari, and H. Demirel, "Colour Image Watermarking based on Wavelet and QR Decomposition," 2017 Signal Processing and Communications Applications Conference, Antalya, Turkey, pp.1-4, 2017, http://dx.doi.org/10.1109/SIU.2017.7960259
  8. Y. S. Lee, Y. H. Seo, and D. W. Kim, "Blind Image Watermarking Based on Adaptive Data Spreading in n-Level DWT Subbands," Security and Communication Networks, Vol.2019, Feb., 2019, http://dx.doi.org/10.1155/2019/8357251
  9. J. Ouyang, G. Coatrieux, B. Chen, and H. Shu, "Color image watermarking based on quaternion Fourier transform and improved uniform log-polar mapping," Computers and Electrical Engineering, Vol.46, pp.419-432, Aug., 2015, https://doi.org/10.1016/j.compeleceng.2015.03.004
  10. A. Sarfaraz, Z. Mehmood, and A. M. Chema, "Highly robust hybrid image watermarking approach using Tchebichef transform with secured PCA and CAT encryption," Soft Computing, Vol.23, No.20, pp.9821-9829, Oct., 2019, https://doi.org/10.1007/s00500-019-03838-2
  11. S. M. Mun, S. H. Nam, H. Jang, D. Kim, and H. K. Lee, "Finding robust domain from attacks: A learning framework for blind watermarking," Neurocomputing, Vol.337, No.14, pp.191-202, April, 2019, https://doi.org/10.1016/j.neucom.2019.01.067
  12. M. Ahmadi, A. Norouzi, S. M. Reza Soroushmehr, N. Karimi, K. Najarian, S. Samavi, and A. Emami, "ReDMark: Framework for Residual Diffusion Watermarking on Deep Networks," arXiv:1810.07248, Dec. 2018
  13. J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, "HiDDeN: Hiding Data With Deep Networks," arXiv:1807.09937, July, 2018
  14. I. S. Kang, W. J. Moon, Y. H. Seo and D. W. Kim, "Distortion in VR 360 degree panoramic image," Summer conference on the KIBME, Jeju, Korea, pp.194-196, June, 2017
  15. M. Wien, J. M. Boyce, T. Stockhammer, and W-H. Peng, "Standardization Status of Immersive Video Coding," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.9, No.1, pp.5-17, March, 2019 https://doi.org/10.1109/jetcas.2019.2898948
  16. R. Anderson, et al. "Jump: virtual reality video," ACM Transactions on Graphics, Vol.35, No.6, Nov., 2016 https://doi.org/10.1145/2980179.2980257
  17. ETRI, Trends in Acquisition and Service Technology for VR Media, Electronics and Telecommunications Trends, Vol. 33(2), 2018 https://doi.org/10.22648/ETRI.2018.J.330206
  18. I. S. Kang, Y. H. Seo, and D. W. Kim, "Blind Digital Watermarking Methods for Omni-directional Panorama Images using Feature Points,", Journal of Broadcasting Engineering, Vol.22, No.6, pp.785-799, Nov., 2017
  19. MPEG-I, Information Technology-Coded Representation of Immersive Media (MPEG-I)-Part 2: Omnidirectional Media Format, document N17563, SO/IEC FDIS 23090-2:201x, ISO/IEC JTC1 SC29/WG11 MPEG, 122nd Meeting, San Diego, USA, Apr., 2018
  20. S. J. Yoon, and G. H. Park, "Improve Compression Efficiency of 360degree VR Video by Correcting Perspective in Cubemap Projection," Journal of Broadcasting Engineering, Vol.22, No.1, pp.136-139, Jan., 2017 https://doi.org/10.5909/JBE.2017.22.1.136
  21. D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, Jan. 2004 https://doi.org/10.1023/B:VISI.0000029664.99615.94
  22. I. S. Kang, A Study on a Digital Watermarking Method for an Omni-Directional Panorama Image using SIFT Feature Points, Kwangwoon University, Seoul, Korea, 2017, Retrieved from http://www.riss.kr/link?id=T14792963