DOI QR코드

DOI QR Code

산업용 테라헤르츠 비파괴 검사 기술

Terahertz Non-destructive Testing Technology for Industrial Applications

  • 이의수 (테라헤르츠창의원천연구실) ;
  • 문기원 (테라헤르츠창의원천연구실) ;
  • 이일민 (테라헤르츠창의원천연구실) ;
  • 박동우 (테라헤르츠창의원천연구실) ;
  • 최다혜 (테라헤르츠창의원천연구실) ;
  • 신준환 (테라헤르츠창의원천연구실) ;
  • 김현수 (테라헤르츠창의원천연구실) ;
  • 박정우 (테라헤르츠창의원천연구실) ;
  • 박경현 (테라헤르츠창의원천연구실)
  • 발행 : 2018.06.01

초록

Terahertz (THz) imaging and spectroscopy have been developed as non-destructive testing methods for various industrial applications. However, they have not been widely adopted in real applications owing to a high system price and the large size of conventional THz time-domain spectroscopy systems, which are based on ultrashort optical pulse lasers. Recently, various types of compact THz emitters and detectors have become available. As a result, THz non-destructive test (NDT) systems have become viable solutions. Herein, we briefly review the recent advances in THz NDT techniques adopting continuous-wave THz systems, including our recent results of a THz-based waterproof test system and an electrical connection inspection system for car manufacturing.

키워드

참고문헌

  1. Markets and Markets, "Non-destructive Testing and Inspection Market Global Forecast to 2023," 2017.
  2. M. Tonouchi, "Cutting-Edge Terahertz Technology," Nature Photon., vol. 1, 2007, pp. 97-105, doi: 10.1038/nphoton.2007.3
  3. Y. Hwang, J. Ahn, J. Mun, S. Bae, Y.U. Jeong, N.A. Vinokurov, and P. Kim, "In Vivo Analysis of THz Wave Irradiation Induced Acute Inflammatory Response in Skin by Laser-Scanning Confocal Microscopy," Opt. Express, vol. 22, no. 10, 2014, pp. 11465-11475. https://doi.org/10.1364/OE.22.011465
  4. B.S. Alexandrov, V. Gelev, A.R. Bishop, A. Usheva, and K.O. Rasmussen, "DNA Breathing Dynamics in the Presence of a Terahertz Field," Phys. Lett. A, vol. 374, no. 10, 2010, pp. 1214-1217. https://doi.org/10.1016/j.physleta.2009.12.077
  5. H. Hintzsche, C. Jastrow, T. Kleine-Ostmann, U. Karst, T. Schrader, and H. Stopper, "Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage in Vitro," PLOS one, vol. 7, no. 9, 2012, Article no. e46397.
  6. A.N. Bogomazova et al., "No DNA Damage Response and Negligible Genome-Wide Transcriptional Changes in Human Embryonic Stem Cells Exposed to Terahertz radiation," Sci. Rep., vol. 5, 2015, Article no. 7749.
  7. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-Infrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors," J. Opt. Soc. Am. B, vol. 7, no. 10, 1990, pp. 2006-2015. https://doi.org/10.1364/JOSAB.7.002006
  8. P.U. Jepsen, D.G. Cooke, and M. Koch, "Terahertz Spectroscopy and Imaging - Modern Techniques and Applications," Laser Photon. Rev., vol. 5, no. 1, Jan. 2011, pp. 124-166. https://doi.org/10.1002/lpor.201000011
  9. R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, and M. Bonn, "Carrier Dynamics in Semiconductors Studied with Time-Resolved Terahertz Spectroscopy," Rev. Mod. Phys., vol. 83, no. 2, 2011, pp. 543-586. https://doi.org/10.1103/RevModPhys.83.543
  10. T.D. Dorney, R.G. Baraniuk, and D.M. Mittleman, "Material Parameter Estimation with terahertz Time-Domain Spectroscopy," J. Opt. Soc. Am. A, vol. 18, no. 7, 2001, pp. 1562-1571. https://doi.org/10.1364/JOSAA.18.001562
  11. Y.C. Chen et al., "Detection and Identification of Explosives Using Terahertz Pulsed Spectroscopic Imaging," Applicat. Phys. Lett., vol. 86, 2005, Article no. 241116.
  12. S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, "Highly Accurate Thickness Measurement of Multi-layered Automotive Paints Using Terahertz Technology," Applicat. Phys. Lett., vol. 109, 2016, Article no. 021105.
  13. J.P. Guillet et al., "Review Of Terahertz Tomography Techniques," J. Infrared, Millimeter, Terahertz Waves, vol. 35, no. 4, 2014, pp. 382-411. https://doi.org/10.1007/s10762-014-0057-0
  14. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, "Terahertz Spectroscopy and Imaging for Defense and Security Applications," Proc. IEEE, vol. 95, no. 8, Aug. 2007, pp. 1514-1527. https://doi.org/10.1109/JPROC.2007.898903
  15. M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, and W.R. Tribe, "Security Applications of Terahertz Technology," in Terahertz for Military and Security Applications, R. Jennifer Hwu, Dwight L. Woolard, eds., Proc. SPIE vol. 5070, 2003, pp. 44-52.
  16. J.M. Chin et al., "Fault Isolation in Semiconductor Product, Process, Physical and Package Failure Analysis: Importance and Overview," Microelectron. Reliability, vol. 51, no. 9-11, 2011, pp. 1440-1448. https://doi.org/10.1016/j.microrel.2011.06.061
  17. T. Yasui, E. Saneyoshi, and T. Araki, "Asynchronous Optical Sampling Terahertz Time-Domain Spectroscopy for Ultrahigh Spectral Resolution and Rapid Data Acquisition," Applicat. Phys. Lett., vol. 87, 2005, Article no. 061101.
  18. Y. Kim and D.-S. Yee, "High-Speed Terahertz Time-Domain Spectroscopy Based on Electronically Controlled Optical Sampling," Opt. Lett., vol. 35, no. 22, 2010, pp. 3715-3717. https://doi.org/10.1364/OL.35.003715
  19. D.-S. Lee, K.H. Jin, J.S. Yahng, H.-S. Yang, C.Y. Kim, and J.C. Ye, "High-Speed Terahertz Reflection Three-Dimensional Imaging Using Beam Steering," Opt. Express,. Vol. 23, no. 4, 2015, pp. 5027-5034. https://doi.org/10.1364/OE.23.005027
  20. A. Acharyya and J. Pl Banerjee, "Potentiality of IMPATT Devices as Terahertz Source: An Avalanche Response Time-Based Approach to Determine The Upper Cut-Off Frequency Limits," IETE J. Res., vol. 59, no. 2, Sept. 2014, pp. 118-127. https://doi.org/10.4103/0377-2063.113029
  21. Z.S. Gribnikov, R.R. Bashirov, and V.V. Mitin, "Negative Effective Mass Mechanism of Negative Differential Drift and Terahertz Generation," IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, 2001, pp. 630-640. https://doi.org/10.1109/2944.974235
  22. M. Asada, S. Suzuki, and N. Kishimoto, "Resonant Tunneling Diodes for Sub-terahertz and Terahertz Oscillators," Jpn. J. Applicat. Phys., vol. 47, 2008, pp. 4375-4384. https://doi.org/10.1143/JJAP.47.4375
  23. L.A. Samoska, "An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime," IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, Sept. 2011, pp. 9-24. https://doi.org/10.1109/TTHZ.2011.2159558
  24. W. Knap and J. Lusakowski, "Terahertz Emission by Plasma Waves in 60 nm Gate High Electron Mobility Transistors," Applicat. Phys. Lett., vol. 84, 2004, pp. 2331-2333. https://doi.org/10.1063/1.1689401
  25. M. Urteaga et al., "InP HBT Integrated Circuit Technology for Terahertz Frequencies," Compound Semiconductor Integr. Circuit Symp., Monterey, CA, USA, Oct. 3-6, 2010, pp. 1-4.
  26. S. Preu, G.H. Dohler, S. Malzer, L.J. Wang, and A.C. Gossard, "Tunable, Continuous-Wave Terahertz Photomixer Sources and Applications," J. Applicat. Phys., vol. 109, no. 6, 2011, Article no. 061301.
  27. E.S. Lee et al., "SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System," ETRI J., vol. 38, no. 4, Aug. 2016, pp. 665-674. https://doi.org/10.4218/etrij.16.0115.0882
  28. E.S. Lee et al., "Semiconductor-Based Terahertz Photonics for Industrial Applications," J. Lightw. Technol., vol. 36, no. 2, Dec. 2017, pp. 274-283.
  29. N. Kim et al., "Monolithically Integrated Optical Beat Sources Toward a Single-Chip Broadband Terahertz Emitter," Laser Phys. Lett., vol. 10, no. 8, 2013, Article no. 085805.
  30. G. Ok, K. Park, H.S. Chun, H.J. Chang, N. Lee, and S.W. Choi, "Highperformance Sub-Terahertz Transmission Imaging System for Food Inspection," Biomed. Opt. Express, vol. 6, no. 5, May 2015, pp. 1929-1941. https://doi.org/10.1364/BOE.6.001929
  31. S.-P. Han et al., "InGaAs Schottky Barrier Diode Array Detector for a Real-Time Compact Terahertz Line Scanner," Opt. Express, vol. 21, no. 22, Nov. 2013, pp. 25874-25882. https://doi.org/10.1364/OE.21.025874
  32. S.-P. Han et al., "Real-Time Continuous-Wave Terahertz Line Scanner Based on a Compact 1 ${\times}$ 240 InGaAs Schottky Barrier Diode Array Detector," Opt. Express, vol. 22. no. 23, Nov. 2014, pp. 28977-28983. https://doi.org/10.1364/OE.22.028977