DOI QR코드

DOI QR Code

무선 양자암호통신 시스템 및 부품 최신 기술 동향

Recent Technology Trends of Free-Space Quantum Key Distribution System and Components

  • 발행 : 2018.12.01

초록

A quantum key distribution (QKD) provides in principle an unconditional secure communication unlike the standard public key cryptography depending on the computational complexity. In particular, free-space QKD can give a secure solution even without a fiber-based infrastructure. In this paper, we investigate an overview of recent research trends in the free-space QKD system, including satellite and handheld moving platforms. In addition, we show the key components for a free-space QKD system such as the integrated components, single photon detectors, and quantum random number generator. We discuss the technical challenges and progress toward a future free- space QKD system and components.

키워드

HJTOCM_2018_v33n6_94_f0001.png 이미지

(그림 3) Short Range Consumer QKD 예시

HJTOCM_2018_v33n6_94_f0002.png 이미지

(그림 4) ETRI 무선 양자키분배 송신부 및 수신부 시스템

HJTOCM_2018_v33n6_94_f0003.png 이미지

(그림 1) 양자암호통신 시스템 구성도

HJTOCM_2018_v33n6_94_f0004.png 이미지

(그림 2) 인공위성 기반 대륙간 무선양자암호통신 (2018 중국)

HJTOCM_2018_v33n6_94_f0005.png 이미지

(그림 5) 무선 양자키분배 송수신부 핵심 부품 구성도

HJTOCM_2018_v33n6_94_f0006.png 이미지

(그림 6) 핸드헬드(hand-held) 형태의 송신기 및 수신기[14]

HJTOCM_2018_v33n6_94_f0007.png 이미지

(그림 7) 실리콘포토닉스 기반 양자암호통신용 송신기 칩[26]

HJTOCM_2018_v33n6_94_f0008.png 이미지

(그림 8) ETRI 실리카 도파로 집적화 칩기반 편광 모듈

HJTOCM_2018_v33n6_94_f0009.png 이미지

(그림 9) Si-APD 기반 SPAD의 광자 검출 효율

HJTOCM_2018_v33n6_94_f0010.png 이미지

(그림 10) InP 반도체 광회로 기반 양자 난수 생성기[34]

HJTOCM_2018_v33n6_94_f0011.png 이미지

(그림 11) LED 출력 및 CMOS 이미지 센서 기반 양자 난수 생성기

<표 1> 무선 양자암호통신 주요 국외 기술 개발 현황

HJTOCM_2018_v33n6_94_t0001.png 이미지

<표 2> 상용 Si-APD 기반 SPAD 모듈의 성능 비교

HJTOCM_2018_v33n6_94_t0002.png 이미지

참고문헌

  1. P.W. Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring" Proc. Annu. Symp. Foundations Comput. Sci., Santa Fe, NM, USA, Nov. 20-22, 1994, pp. 124-134.
  2. https://www.iad.gov/iad/news/changes-to-cnsa-suit-and-quantum-computing-policy.cfm
  3. C.H. Bennett and G. Brassard, "Quantum Cryptography: Public Key Distribution and Coin Tossing," Proc. IEEE Int. Conf. Comput., Syst., Signal Process., Banalore, India, Dec. 9-12, 1984, pp. 175-179.
  4. C.H. Bennett and G. Brassard, "Experimental Quantum Cryptography: The Dawn of a New Era for Quantum Cryptography: the Experimental Prototype is Working!" ACM Sigact News, vol. 20, no. 4, Nov. 1989, pp. 78-80. https://doi.org/10.1145/74074.74087
  5. R.J. Hughes et al., "Practical Free-Space Quantum Key Distribution over 10 km in Daylight and at Night," New J. Phys., vol. 4, 2002, pp. 43:1-43:14.
  6. I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer. "Free-Space Quantum Key Distribution with Entangled Photons," Applied Phys. Lett., vol. 89, no. 10, 2006, pp. 101122:1-101122:4.
  7. T. Schmitt-Manderbach et al., "Experimental Demonstration of free-Space Decoy-State Quantum Key Distribution over 144 km," Phys. Rev. Lett., vol. 98. 2007, pp. 010504:1-010504:2.
  8. M. Peev et al., "The SECOQC Quantum Key Distribution Network in Vienna," New J. Phys., vol. 11, 2009, Article no. 075001.
  9. M.P. Peloso et al., "Daylight Operation of a Free Space, Entanglement-Based Quantum Key Distribution System," New J. Phys., vol. 11, 2009, Article no. 045007.
  10. J.-Y. Wang et al., "Direct and Full-Scale Experimental Verifications Towards Ground-Satellite Quantum Key Distribution," Nature Photon., vol. 7. no. 5, 2013, pp. 387-393.
  11. S. Nauerth et al., "Air-to-Ground Quantum Communication," Nature Photon., vol. 7, 2013, pp. 382-386. https://doi.org/10.1038/nphoton.2013.46
  12. J.-P. Bourgoin et al., "Free-Space Quantum Key Distribution to a Moving Receiver," Opt. Express, vol. 23, no. 26, 2015, pp. 33437-33447. https://doi.org/10.1364/OE.23.033437
  13. S.-K. Liao et al., "Satellite-to-Ground Quantum Key Distribution."Nature, vol. 549, no. 7670, 2017, pp. 43-47. https://doi.org/10.1038/nature23655
  14. S.-K. Liao et al., "Satellite-Relayed Intercontinental Quantum Network," Phys. Rev. Lett., vol. 120, no. 3, 2018, Article no. 030501.
  15. D. Dequal et al., "Experimental Single-Photon Exchange Along a Space Link of 7000 km," Phys. Rev. A, vol. 93, no. 1, 2016, Article no. 010301.
  16. Z. Tang et al., "Generation and Analysis of Correlated Pairs of Photons aboard a Nanosatellite," Phys. Rev. App., vol. 5, no. 5, 2016, Article no. 054022.
  17. H. Takenaka et al., "Satellite-to-Ground Quantum-Limited Communication Using a 50-kg-Class Microsatellite," Nature Photon., vol. 11, no. 8, 2017, pp. 502-508. https://doi.org/10.1038/nphoton.2017.107
  18. K. Gunthner et al., "Quantum-Limited Measurements of Optical Signals from a Geostationary Satellite," Optica, vol. 4, no. 6, 2017, pp. 611-616. https://doi.org/10.1364/OPTICA.4.000611
  19. I. Khan et al., "Satellite-Based QKD," Opt. Photon. News, vol. 29, no. 2, 2018, pp. 26-33.
  20. http://uknqt.epsrc.ac.uk/
  21. J.S. Choe et al., "Silica Planar Lightwave Circuit Based Integrated 1 ${\times}$ 4 Polarization Beam Splitter Module for Free-Space BB84 Quantum Key Distribution," IEEE Photon. J., vol. 10, 2018, Article no. 7600108.
  22. H. Ko et al., "Critical Side Channel Effects in Random Bit Generation with Multiple Semiconductor Lasers in a Polarization-Based Quantum Key Distribution System," Opt. Express, vol. 25, no. 17, 2017, pp. 20045-20055. https://doi.org/10.1364/OE.25.020045
  23. H. Ko et al., "High-Speed and High-Performance Polarization-Based Quantum Key Distribution System Without Side Channel Effects Caused by Multiple Lasers," Photon. Res., vol. 6, no. 3, 2018, pp. 214-219. https://doi.org/10.1364/PRJ.6.000214
  24. H. Chum et al., "Handheld Free Space Quantum Key Distribution with Dynamic Motion Compensation," Opt. Express, vol. 25, 2017, pp. 6784-6795. https://doi.org/10.1364/OE.25.006784
  25. G. Vest et al., "Design and Evaluation of a Handheld Quantum Key Distribution Sender Module," IEEE J. Sel. Top. Quantum Electron., vol. 21, 2015, Article no. 6600607.
  26. C. Ma et al., "Silicon Photonic Transmitter for Polarization-Encoded Quantum Key Distribution," Optica, vol. 3, 2016, pp. 1274-1278. https://doi.org/10.1364/OPTICA.3.001274
  27. P. Sibson et al., "Integrated Silicon Photonics for High-Speed Quantum Key Distribution," Optica, vol. 4, 2017, pp. 172-177. https://doi.org/10.1364/OPTICA.4.000172
  28. S. Cova et al., "Avalanche Photodiodes and Quenching Circuits for Single-Photon Detection," Appl. Opt., vol. 35, 1996, pp. 1956-1976. https://doi.org/10.1364/AO.35.001956
  29. A.L. Lacaita, M. Ghioni, and S. Cova, "Double Epitaxy Improves Single-Photon Avalanche Diode Performance," Electron. Lett., vol. 25, June, 1989, pp. 841-843. https://doi.org/10.1049/el:19890567
  30. S. Cova et al., "Semi-Conductor Based Detectors," Exp. Methods Phys. Sci., vol. 45, 2013, pp. 83-146.
  31. E.A.G. Webster et al., "A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm," IEEE Electron Device Lett., vol. 33, no. 5, 2012, pp. 694-696. https://doi.org/10.1109/LED.2012.2187420
  32. M.A. Karami et al., "A New Singlephoton Avalanche Diode in 90 nm Standard CMOS Technology," Opt. Exp., vol. 18, no. 21, Oct. 2010, pp. 22158-22166. https://doi.org/10.1364/OE.18.022158
  33. M. Herrero-Collantes and J. C. Garcia-Escartin, "Quantum Random Number Generators," Rev. Mod. Phys., vol. 89, no. 1, Feb. 2017, Article no. 015004.
  34. C. Abellan et al., "Quantum Entropy Source on an InP Photonic Integrated Circuit for Random Number Generation," Optica, vol. 3, no. 9, 2016. pp. 989-994. https://doi.org/10.1364/OPTICA.3.000989
  35. X.G. Zhang et al., "Fully Integrated 3.2 Gbps Quantum Random Number Generator with Real-Time Extraction," Rev. Sci. Instrum., vol. 87, no. 7, 2016, pp. 1-3.
  36. B. Sanguinetti et al., "Quantum Random Number Generation on a Mobile Phone," Phys. Rev. X, vol. 4, no. 3, 2014, pp. 1-6.
  37. L. Trevisan, "Extractors and Pseudorandom Generators," J. ACM, vol. 48, no. 4, 2001, pp. 860-879. https://doi.org/10.1145/502090.502099
  38. T. Lunghi et al. "Self-testing quantum random number generator," Phys. Rev. Lett., vol. 114, 2015, Article no. 150501.
  39. A. Rukhin et al., "A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications," NIST Special Publication 800-22, Revision 1.a., 2010.