DOI QR코드

DOI QR Code

An enhancement of GloSea5 ensemble weather forecast based on ANFIS

ANFIS를 활용한 GloSea5 앙상블 기상전망기법 개선

  • Moon, Geon-Ho (Department of Civil & Environmental Engineering, Sejong University) ;
  • Kim, Seon-Ho (Department of Civil & Environmental Engineering, Sejong University) ;
  • Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University)
  • 문건호 (세종대학교 건설환경공학과) ;
  • 김선호 (세종대학교 건설환경공학과) ;
  • 배덕효 (세종대학교 건설환경공학과)
  • Received : 2018.08.16
  • Accepted : 2018.09.14
  • Published : 2018.11.30

Abstract

ANFIS-based methodology for improving GloSea5 ensemble weather forecast is developed and evaluated in this study. The proposed method consists of two steps: pre & post processing. For ensemble prediction of GloSea5, weights are assigned to the ensemble members based on Optimal Weighting Method (OWM) in the pre-processing. Then, the bias of the results of pre-processed is corrected based on Model Output Statistics (MOS) method in the post-processing. The watershed of the Chungju multi-purpose dam in South Korea is selected as a study area. The results of evaluation indicated that the pre-processing step (CASE1), the post-processing step (CASE2), pre & post processing step (CASE3) results were significantly improved than the original GloSea5 bias correction (BC_GS5). Correction performance is better the order of CASE3, CASE1, CASE2. Also, the accuracy of pre-processing was improved during the season with high variability of precipitation. The post-processing step reduced the error that could not be smoothed by pre-processing step. It could be concluded that this methodology improved the ability of GloSea5 ensemble weather forecast by using ANFIS, especially, for the summer season with high variability of precipitation when applied both pre- and post-processing steps.

본 연구에서는 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법을 개발하고 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역을 선정하였으며, 개선 기법은 ANFIS 기반의 전 후처리기법으로 구성된다. 전처리 기법에서 GloSea5의 앙상블 멤버에 가중치를 부여하며(OWM), 후처리 과정에서는 전처리결과를 편의보정 한다(MOS). 평가결과 편의보정된 GloSea5에 비해 예측성능이 개선되었으며, CASE3, CASE1, CASE2 순으로 모의성능이 우수하였다. 전처리 기법은 강수의 변동성이 큰 계절에 개선효과가 우수하였으며, 후처리 기법은 전처리로 개선하지 못한 오차를 줄 일 수 있는 것으로 나타났다. 따라서 본 연구에서 개발한 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법은 전 후처리 기법을 함께 사용하는 것이 가장 좋으며, 특히 여름철과 같이 강수의 변동성이 큰 계절에 활용성이 높을 것으로 판단된다.

Keywords

References

  1. Awan, J. A., and Bae, D. H. (2014). "Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts." Water resources management, Vol. 28 No. 5, pp. 1185-1199. https://doi.org/10.1007/s11269-014-0512-7
  2. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L., Menard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S., and Harding, R. J. (2011). "The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes." Geoscientific Model Development, Vol. 4, pp. 595-640.
  3. Buizza, R., Milleer, M., and Palmer, T. N. (1999). "Stochastic representation of model uncertainties in the ECMWF ensemble prediction system." Quarterly Journal of the Royal Meteorological Society, Vol. 125, No. 560, pp. 2887-2908. https://doi.org/10.1002/qj.49712556006
  4. Chau, K. W., Wu, C. L., and Li, Y. S. (2005). "Comparison of several flood forecasting models in Yangtze River." Journal of Hydrologic Engineering, Vol. 10, No. 6, pp. 485-491. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:6(485)
  5. Cheng, L., and AghaKouchak, A. (2015). "A methodology for deriving ensemble response from multimodel simulations." Journal of Hydrology, Vol. 522, pp. 49-57. https://doi.org/10.1016/j.jhydrol.2014.12.025
  6. Cuo, L., Pagano, T. C., and Wang, Q. J. (2011). "A review of quantitative precipitation forecasts and their use in short-to mediumrange streamflow forecasting." Journal of hydrometeorology, Vol. 12, No. 5, pp. 713-728. https://doi.org/10.1175/2011JHM1347.1
  7. Davies, T., Cullen, M. J., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N. (2005). "A new dynamical core for the Met Office's global and regional modelling of the atmosphere." Quarterly Journal of the Royal Meteorological Society, Vol. 131, No. 608, pp. 1759-1782. https://doi.org/10.1256/qj.04.101
  8. Doycheva, K., Horn, G., Koch, C., Schumann, A., and Konig, M. (2017). "Assessment and weighting of meteorological ensemble forecast members based on supervised machine learning with application to runoff simulations and flood warning." Advanced Engineering Informatics, Vol. 33, pp. 427-439. https://doi.org/10.1016/j.aei.2016.11.001
  9. Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S. (2010). CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 4.1. Publication No. LA-CC-06-012. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, 675.
  10. Jang, J. S. R. (1993). "ANFIS: Adaptive-network-based fuzzy inference system." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685. https://doi.org/10.1109/21.256541
  11. Jang, J. S. R. (1996). "Input selection for ANFIS learning." Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 1493-1499.
  12. Korea Meteorological Administration (KMA) (2015). Operating system and 2014 verification of the high resolution joint seasonal forecast system between KMA and Met Office. Publication No. 11-1360620-000034-14, KMA, pp. 1-7.
  13. Krasnopolsky, V. M., and Lin, Y. (2012). "A neural network nonlinear multimodel ensemble to improve precipitation forecasts over continental US." Advances in Meteorology, Vol. 2012.
  14. Lorenz, E. N. (1969). "The predictability of a flow which possesses many scales of motion." Tellus, Vol. 21, No. 3, pp. 289-307. https://doi.org/10.1111/j.2153-3490.1969.tb00444.x
  15. Madec, G. (NEMO Ocean Engine) (2008). Note du Pole de Modelisation, Publication No. 27, ISSN No 1288-1619, Institut Pierre-Simon Laplace (IPSL), France.
  16. Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Theme$\ss$l, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. (2010). "Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user." Reviews of Geophysics, Vol. 48, No. 3.
  17. Min, S. K., Simonis, D., and Hense, A. (2007). "Probabilistic climate change predictions applying Bayesian model averaging." Philosophical transactions of the royal society of london a: mathematical, physical and engineering sciences, Vol. 365, No.1857, pp. 2103-2116. https://doi.org/10.1098/rsta.2007.2070
  18. Mitchell, T. M. (1997). Machine Learning. WCB/McGraw-Hill, Boston, M.A., pp. 108-112.
  19. Nair, A., Singh, G., and Mohanty, U. C. (2018). "Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique." Pure and Applied Geophysics, Vol. 175, No. 1, pp. 403-419. https://doi.org/10.1007/s00024-017-1652-5
  20. Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). "Using Bayesian model averaging to calibrate forecast ensembles." Monthly Weather Review, Vol. 133, pp. 1155-1174. https://doi.org/10.1175/MWR2906.1
  21. Sarraf, B. S., Rasouli, A. A., Nokhandan, M. H., Naghab, S. S., and Malboosi, S. (2017). "Analysis of post-processing method for dynamic models output using network data for the drought in North West of Iran." An International Peer Reviewed Open Access Journal For Rapid Publication, Vol. 181.
  22. Shiri, J., and Kisi, O. (2010). "Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model." Journal of Hydrology, Vol. 394, No. 3-4, pp. 486-493. https://doi.org/10.1016/j.jhydrol.2010.10.008
  23. Sun, W., and Trevor, B. (2018). "Multiple model combination methods for annual maximum water level prediction during river ice breakup." Hydrological Processes, Vol. 32, No. 3, pp. 421-435. https://doi.org/10.1002/hyp.11429
  24. Tebaldi, C., and Knutti, R. (2007). "The use of the multi-model ensemble in probabilistic climate projections." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 365, No. 1857, pp. 2053-2075. https://doi.org/10.1098/rsta.2007.2076
  25. World Meterological Organization (WMO) (2012). Guidelines on ensemble prediction systems and forecasting. World Meterological Organization, Publication No. 1091, Geneva, Switzerland, pp. 1-17.
  26. Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P. (2004). "Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs." Climatic Change, Vol. 62, pp. 189-216.
  27. Wu, M. C., Hong, J. S., Hsiao, L. F., Hsu, L. H., and Wang, C. J. (2017). "Effective Use of Ensemble Numerical Weather Predictions in Taiwan by Means of a SOM-Based Cluster Analysis Technique." Water, Vol. 9, No. 11, pp. 836. https://doi.org/10.3390/w9110836
  28. Xu, J., Tan, P. N., Zhou, J., and Luo, L. (2017). "Online multitask learning framework for ensemble forecasting." IEEE Transactions on Knowledge and Data Engineering, Vol. 29, No. 6, pp. 1268-1280. https://doi.org/10.1109/TKDE.2017.2662006
  29. Yaseen, Z.M., El-Shafie, A., Jaafar, O., Afan, H.A., and Sayl, K.N. (2015). "Artificial intelligence based models for stream-flow forecasting: 2000-2015." Journal of Hydrology, Vol. 530, pp. 829-844. https://doi.org/10.1016/j.jhydrol.2015.10.038