References
- Awan, J. A., and Bae, D. H. (2014). "Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts." Water resources management, Vol. 28 No. 5, pp. 1185-1199. https://doi.org/10.1007/s11269-014-0512-7
- Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L., Menard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S., and Harding, R. J. (2011). "The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes." Geoscientific Model Development, Vol. 4, pp. 595-640.
- Buizza, R., Milleer, M., and Palmer, T. N. (1999). "Stochastic representation of model uncertainties in the ECMWF ensemble prediction system." Quarterly Journal of the Royal Meteorological Society, Vol. 125, No. 560, pp. 2887-2908. https://doi.org/10.1002/qj.49712556006
- Chau, K. W., Wu, C. L., and Li, Y. S. (2005). "Comparison of several flood forecasting models in Yangtze River." Journal of Hydrologic Engineering, Vol. 10, No. 6, pp. 485-491. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:6(485)
- Cheng, L., and AghaKouchak, A. (2015). "A methodology for deriving ensemble response from multimodel simulations." Journal of Hydrology, Vol. 522, pp. 49-57. https://doi.org/10.1016/j.jhydrol.2014.12.025
- Cuo, L., Pagano, T. C., and Wang, Q. J. (2011). "A review of quantitative precipitation forecasts and their use in short-to mediumrange streamflow forecasting." Journal of hydrometeorology, Vol. 12, No. 5, pp. 713-728. https://doi.org/10.1175/2011JHM1347.1
- Davies, T., Cullen, M. J., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N. (2005). "A new dynamical core for the Met Office's global and regional modelling of the atmosphere." Quarterly Journal of the Royal Meteorological Society, Vol. 131, No. 608, pp. 1759-1782. https://doi.org/10.1256/qj.04.101
- Doycheva, K., Horn, G., Koch, C., Schumann, A., and Konig, M. (2017). "Assessment and weighting of meteorological ensemble forecast members based on supervised machine learning with application to runoff simulations and flood warning." Advanced Engineering Informatics, Vol. 33, pp. 427-439. https://doi.org/10.1016/j.aei.2016.11.001
- Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S. (2010). CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 4.1. Publication No. LA-CC-06-012. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, 675.
- Jang, J. S. R. (1993). "ANFIS: Adaptive-network-based fuzzy inference system." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685. https://doi.org/10.1109/21.256541
- Jang, J. S. R. (1996). "Input selection for ANFIS learning." Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 1493-1499.
- Korea Meteorological Administration (KMA) (2015). Operating system and 2014 verification of the high resolution joint seasonal forecast system between KMA and Met Office. Publication No. 11-1360620-000034-14, KMA, pp. 1-7.
- Krasnopolsky, V. M., and Lin, Y. (2012). "A neural network nonlinear multimodel ensemble to improve precipitation forecasts over continental US." Advances in Meteorology, Vol. 2012.
- Lorenz, E. N. (1969). "The predictability of a flow which possesses many scales of motion." Tellus, Vol. 21, No. 3, pp. 289-307. https://doi.org/10.1111/j.2153-3490.1969.tb00444.x
- Madec, G. (NEMO Ocean Engine) (2008). Note du Pole de Modelisation, Publication No. 27, ISSN No 1288-1619, Institut Pierre-Simon Laplace (IPSL), France.
-
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Theme
$\ss$ l, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. (2010). "Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user." Reviews of Geophysics, Vol. 48, No. 3. - Min, S. K., Simonis, D., and Hense, A. (2007). "Probabilistic climate change predictions applying Bayesian model averaging." Philosophical transactions of the royal society of london a: mathematical, physical and engineering sciences, Vol. 365, No.1857, pp. 2103-2116. https://doi.org/10.1098/rsta.2007.2070
- Mitchell, T. M. (1997). Machine Learning. WCB/McGraw-Hill, Boston, M.A., pp. 108-112.
- Nair, A., Singh, G., and Mohanty, U. C. (2018). "Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique." Pure and Applied Geophysics, Vol. 175, No. 1, pp. 403-419. https://doi.org/10.1007/s00024-017-1652-5
- Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). "Using Bayesian model averaging to calibrate forecast ensembles." Monthly Weather Review, Vol. 133, pp. 1155-1174. https://doi.org/10.1175/MWR2906.1
- Sarraf, B. S., Rasouli, A. A., Nokhandan, M. H., Naghab, S. S., and Malboosi, S. (2017). "Analysis of post-processing method for dynamic models output using network data for the drought in North West of Iran." An International Peer Reviewed Open Access Journal For Rapid Publication, Vol. 181.
- Shiri, J., and Kisi, O. (2010). "Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model." Journal of Hydrology, Vol. 394, No. 3-4, pp. 486-493. https://doi.org/10.1016/j.jhydrol.2010.10.008
- Sun, W., and Trevor, B. (2018). "Multiple model combination methods for annual maximum water level prediction during river ice breakup." Hydrological Processes, Vol. 32, No. 3, pp. 421-435. https://doi.org/10.1002/hyp.11429
- Tebaldi, C., and Knutti, R. (2007). "The use of the multi-model ensemble in probabilistic climate projections." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 365, No. 1857, pp. 2053-2075. https://doi.org/10.1098/rsta.2007.2076
- World Meterological Organization (WMO) (2012). Guidelines on ensemble prediction systems and forecasting. World Meterological Organization, Publication No. 1091, Geneva, Switzerland, pp. 1-17.
- Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P. (2004). "Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs." Climatic Change, Vol. 62, pp. 189-216.
- Wu, M. C., Hong, J. S., Hsiao, L. F., Hsu, L. H., and Wang, C. J. (2017). "Effective Use of Ensemble Numerical Weather Predictions in Taiwan by Means of a SOM-Based Cluster Analysis Technique." Water, Vol. 9, No. 11, pp. 836. https://doi.org/10.3390/w9110836
- Xu, J., Tan, P. N., Zhou, J., and Luo, L. (2017). "Online multitask learning framework for ensemble forecasting." IEEE Transactions on Knowledge and Data Engineering, Vol. 29, No. 6, pp. 1268-1280. https://doi.org/10.1109/TKDE.2017.2662006
- Yaseen, Z.M., El-Shafie, A., Jaafar, O., Afan, H.A., and Sayl, K.N. (2015). "Artificial intelligence based models for stream-flow forecasting: 2000-2015." Journal of Hydrology, Vol. 530, pp. 829-844. https://doi.org/10.1016/j.jhydrol.2015.10.038