DOI QR코드

DOI QR Code

Chemistry of persulfates for the oxidation of organic contaminants in water

  • Lee, Changha (School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University) ;
  • Kim, Hak-Hyeon (School of Urban and Environmental Engineering, UNIST) ;
  • Park, Noh-Back (National Institute of Fisheries Science (NIFS))
  • 투고 : 2018.06.07
  • 심사 : 2018.07.19
  • 발행 : 2018.11.25

초록

Persulfates (i.e., peroxymonosulfate and peroxydisulfate) are capable of oxidizing a wide range of organic compounds via direct reactions, as well as by indirect reactions by the radical intermediates. In aqueous solution, persulfates undergo self-decomposition, which is accelerated by thermal, photochemical and metal-catalyzed methods, which usually involve the generation of various radical species. The chemistry of persulfates has been studied since the early twentieth century. However, its environmental application has recently gained attention, as persulfates show promise in in situ chemical oxidation (ISCO) for soil and groundwater remediation. Persulfates are known to have both reactivity and persistence in the subsurface, which can provide advantages over other oxidants inclined toward either of the two properties. Besides the ISCO applications, recent studies have shown that the persulfate oxidation also has the potential for wastewater treatment and disinfection. This article reviews the chemistry regarding the hydrolysis, photolysis and catalysis of persulfates and the reactions of persulfates with organic compounds in aqueous solution. This article is intended to provide insight into interpreting the behaviors of the contaminant oxidation by persulfates, as well as developing new persulfate-based oxidation technologies.

키워드

과제정보

연구 과제 주관 기관 : Korea Ministry of Environment, National Institute of Fisheries Science

참고문헌

  1. Ahmad, M., Teel, A.L. and Watts, R.J. (2013), "Mechanism of persulfate activation by phenols", Environ. Sci. Technol., 47(11), 5864-5871. https://doi.org/10.1021/es400728c
  2. Ando, W., Miyazaki, H. and Akasaka, T. (1983), "Oxidative ring cleavage of o-benzoquinone by potassium peroxomonosulphate", J. Chem. Soc. Chem. Comm., 9, 518-519.
  3. Anipsitakis, G.P. and Dionysiou, D.D. (2003), "Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt", Environ. Sci. Technol., 20(37), 4790-4797.
  4. Anipsitakis, G.P. and Dionysiou, D.D. (2004), "Radical generation by the interaction of transition metals with common oxidants", Environ. Sci. Technol., 38(13), 3705-3712. https://doi.org/10.1021/es035121o
  5. Anipsitakis, G.P., Stathatos, E. and Dionysiou, D.D. (2005), "Heterogeneous activation of oxone using $Co_3O_4$", J. Phys. Chem. B, 109(27), 13052-13055. https://doi.org/10.1021/jp052166y
  6. Anipsitakis, G.P., Dionysiou, D.D. and Gonzalez, M.A. (2006), "Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds: Implications of chloride ions", Environ. Sci. Technol., 40(3), 1000-1007. https://doi.org/10.1021/es050634b
  7. Ball, D.L. and Edwards, J.O. (1956), "The kinetics and mechanism of the decomposition of Caro's acid: I", J. Am. Chem. Soc., 78(6), 1125-1129. https://doi.org/10.1021/ja01587a011
  8. Bao, Z.C. and Barker, J.R. (1996), "Temperature and ionic strength effects on some reactions involving sulfate radical [$SO_4^^-$(aq)]", J. Phys. Chem., 100(23), 9780-9787. https://doi.org/10.1021/jp9603703
  9. Bard, A.J., Parsons, R. and Jordan, J. (1985), Standard Potentials in Aqueous Solution, Marcel Dekker, Inc., New York, U.S.A.
  10. Bartlett, P.D. and Cotman, J.D. (1949), "The kinetics of the decomposition of potassium persulfate in aqueous solutions of methanol", J. Am. Chem. Soc., 71(4), 1419-1422. https://doi.org/10.1021/ja01172a078
  11. Bartlett, P.D. and Nozaki, K. (1948), "Polymerization of allyl compounds: IV. Emulsion polymerization of allyl acetate", J. Polymer Sci., 3(2), 216-222. https://doi.org/10.1002/pol.1948.120030207
  12. Behrman, E.J. (1967), "Studies on the reaction between peroxydisulfate ions and aromatic amines: Boyland-Sims oxidation", J. Am. Chem. Soc., 89(10), 2424-2428. https://doi.org/10.1021/ja00986a032
  13. Behrman, E.J. and Walker, P.P. (1962), "The Elbs peroxydisulfate oxidation: Kinetics", J. Am. Chem. Soc., 84(18), 3454-3457. https://doi.org/10.1021/ja00877a007
  14. Beylerian, M.M. and Khachatrian, A.G. (1984), "The mechanism of the oxidation of alcohols and aldehydes with peroxydisulphate ion", J. Chem. Soc. Perkin Trans. 2, 12, 1937-1941.
  15. Bielski, B.H.J., Cabelli, D.E., Arudi, R.L. and Ross, A.B. (1985), "Reactivity of $HO_2/O_2^-$ radicals in aqueous solution", J. Phys. Chem. Ref. Data, 14(4), 1041-1100. https://doi.org/10.1063/1.555739
  16. Boyland, E., Manson, D. and Sims, P. (1953), "The preparation of o-aminophenyl sulphates", J. Chem. Soc., 3623-3628.
  17. Brandt, C. and van Eldik, R. (1995), "Transition metal-catalyzed oxidation of sulfur(IV) oxides: Atmospheric-relevant processes and mechanisms", Chem. Rev., 95(1), 119-190. https://doi.org/10.1021/cr00033a006
  18. Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988), "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution", J. Phys. Chem. Ref. Data, 17(2), 513-886. https://doi.org/10.1063/1.555805
  19. Chen, J., Fang, C., Xia, W., Huang, T. and Huang, C.H. (2018), "Selective transformation of ${\beta}$-lactam antibiotics by peroxymonosulfate: Reaction kinetics and nonradical mechanism", Environ. Sci. Technol., 52(3), 1461-1470. https://doi.org/10.1021/acs.est.7b05543
  20. Crist, R.H. (1932), "The quantum efficiency of the photochemical decomposition of potassium persulfate", J. Am. Chem. Soc., 54(10), 3939-3942. https://doi.org/10.1021/ja01349a017
  21. Deborde, A. and von Gunten, U. (2008), "Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review", Water Res., 42(1-2), 13-51. https://doi.org/10.1016/j.watres.2007.07.025
  22. Dogliotti, L. and Hayon, E. (1967), "Flash photolysis of per[oxydi]sulfate ions in aqueous solutions: The sulfate and ozonide radical anions", J. Phys. Chem., 71(8), 2511-2516. https://doi.org/10.1021/j100867a019
  23. Eberson, L. (1982), "Electron-transfer reactions in organic chemistry", Adv. Phys. Org. Chem., 18, 79-185.
  24. Elias, H., Gotz, U. and Wannowius, K.J. (1994), "Kinetics and mechanism of the oxidation of sulfur(IV) by peroxomonosulfuric acid anion", Atmos. Environ., 28(3), 439-448. https://doi.org/10.1016/1352-2310(94)90122-8
  25. Evans, D.F. and Upton, M.W. (1985), "Studies on singlet oxygen in aqueous solution: Part 3. The decomposition of peroxyacids", J. Chem. Soc. Dalton Trans., 6, 1151-1153.
  26. Furholz, U. and Haim, A. (1987), "Kinetics and mechanisms of the reactions of mononuclear and binuclear ruthenium(II) ammine complexes with peroxydisulfate", Inorg. Chem., 26(20), 3243-3248. https://doi.org/10.1021/ic00267a005
  27. Fang, G.D., Gao, J., Dionysiou, D.D., Liu, C. and Zhou, D.M. (2013), "Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs", Environ. Sci. Technol., 47(9), 4605-4611. https://doi.org/10.1021/es400262n
  28. Fang, G.D., Wu, W.H., Deng, Y.M. and Zhou, D.M. (2017), "Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation", Chem. Eng. J., 323, 84-95. https://doi.org/10.1016/j.cej.2017.04.092
  29. Furman, O.S., Teel, A.L. and Watts, R.J. (2010), "Mechanism of base activation of persulfate", Environ. Sci. Technol., 44(16), 6423-6428. https://doi.org/10.1021/es1013714
  30. Gallopo, A.R. and Edwards, J.O. (1971), "Kinetics and mechanisms of the spontaneous and metal-modified oxidations of ethanol by peroxydisulfate ion", J. Org. Chem., 36(26), 4089-4096. https://doi.org/10.1021/jo00825a018
  31. Gallopo, A.R. and Edwards, J.O. (1981), "Kinetics and mechanism of the oxidation of pyridine by Caro's acid catalyzed by ketones", J. Org. Chem., 46(8), 1684-1688. https://doi.org/10.1021/jo00321a032
  32. Gilbert, B.C., Stell, J.K. and Jeff, M. (1988), "Electron spin resonance studies of the effect of copper(II) and copper(I) on the generation and reactions of organic radicals formed from the Fenton reaction and the $Ti^{III}-H_2O_2$ and $Ti^{III}-S_2O_8^^{2-}$ redox couples", J. Chem. Soc. Perkin Trans. 2, 10, 1867-1873.
  33. Gilbert, B.C. and Stell, J.K. (1990), "Mechanisms of peroxide decomposition: An ESR study of the reactions of the peroxomonosulphate anion ($HOOSO_3^-$) with $Ti^{III}$, $Fe^{II}$ and aoxygen-substituted radicals," J. Chem. Soc. Perkin Trans. 2, 8, 1281-1288.
  34. Govindan, K., Raja, M., Noel, M. and James, E.J. (2014), "Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide", J. Hazard. Mater., 272, 42-51. https://doi.org/10.1016/j.jhazmat.2014.02.036
  35. Hayon, E., Treinin, A. and Wilf, J. (1972), "Electronic spectra, photochemistry and autoxidation mechanism of the sulfitebisulfite-pyrosulfite systems: The $SO_2^^-,\;SO_3^^-,\;SO_4^^-$ and $SO_5^^-$ radicals", J. Am. Chem. Soc., 94(1), 47-57. https://doi.org/10.1021/ja00756a009
  36. Heidt, L.J. (1942), "The photolysis of persulfate", J. Phys. Chem., 10(5), 297-302. https://doi.org/10.1063/1.1723724
  37. Herrmann, H. (2007), "On the photolysis of simple anions and neutralmolecules as sources of $O^-$/OH, $SO_x^^-$and Cl in aqueous solution", Phys. Chem. Chem. Phys., 9(30), 3935-3964. https://doi.org/10.1039/B618565G
  38. Herrmann, H., Reese, A. and Zellner, R. (1995), "Time-resolved UV/vis diode array absorption spectroscopy of $SO_x^^-$ (x=3, 4, 5) radical anions in aqueous solution", J. Mol. Struct., 348, 183-186. https://doi.org/10.1016/0022-2860(95)08619-7
  39. Hinchee, R.E. and Smith, L.A. (1992) In Situ Thermal Technologies for Site Remediation, CRC press, Boca Raton, FL, U.S.A.
  40. House, D.A. (1962), "Kinetics and mechanism of oxidations by peroxydisulfate", Chem. Rev., 62(3), 185-203. https://doi.org/10.1021/cr60217a001
  41. Huang, K.C., Couttenye, R.A. and Hoag, G.E. (2002), "Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)", Chemopshere, 49(4), 413-420. https://doi.org/10.1016/S0045-6535(02)00330-2
  42. Hug, S.J. and Leupin, O. (2003), "Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pHdependent formation of oxidant in the Fenton reaction", Environ. Sci. Technol., 37(12), 2734-2742. https://doi.org/10.1021/es026208x
  43. Huh, J.H. and Ahn, J.W. (2017), "A perspective of chemical treatment for cyanobacteria control toward sustainable freshwater development", Environ. Eng. Res., 22(1), 1-11. https://doi.org/10.4491/eer.2016.155
  44. Huie, R.E., Clifton, C.L. and Neta, P. (1991), "Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions", J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem., 38(5), 477-481.
  45. Huie, R.E. and Neta, P. (1984), "Chemical behavior of $SO_3^^-$ and $SO_5^^-$ radicals in aqueous solutions", J. Phys. Chem., 88(23), 5665-5669. https://doi.org/10.1021/j150667a042
  46. Huling, S.G. and Pivetz, B. (2006), "In-Situ Chemical Oxidation - Engineering Issue", EPA/600/R-06/072; US Environmental Protection Agency, National Risk Management Research Laboratory, R.S. Kerr Environmental Research Center, Ada, OK, U.S.A.
  47. Hynes, A.J. and Wine, P.H. (1988), "Time-resolved resonance Raman study of the spectroscopy and kinetics of the $Cl_2^^-$ radical anion in aqueous solution", J. Chem. Phys., 89(6), 3565-3572. https://doi.org/10.1063/1.454926
  48. Ike, I.A., Linden, K.G., Orbell, J.D. and Duke, M. (2018), "Critical review of the science and sustainability of persulphate advanced oxidation processes", Chem. Eng. J., 338, 651-669. https://doi.org/10.1016/j.cej.2018.01.034
  49. Ivanov, K.L., Glebov, E.M., Plyusnin, V.F., Ivanov, Y.V., Grivin, V.P. and Bazhin, N.M. (2000), "Laser flash photolysis of sodium persulfate in aqueous solution with additions of dimethylformamide", J. Photochem. Photobiol. A: Chem., 133(1-2), 99-104. https://doi.org/10.1016/S1010-6030(00)00218-5
  50. Jayson, G.G. and Parsons, B.J. (1972), "Oxidation of ferrous ions by perhydroxyl radicals", Trans. Faraday Soc., 68, 236-242.
  51. Jiang, P.Y., Katsumura, Y., Nagalshi, R., Domae, M., Ishikawa, K., Ishigure, K. and Yoshida, Y. (1992), "Pulse radiolysis study of concentrated sulfuric acid solutions", J. Chem. Soc. Faraday Trans., 88(12), 1653-1658. https://doi.org/10.1039/ft9928801653
  52. Johnson, R.L., Tratnyek, P.G. and Johnson, R.O. (2008), "Persulfate persistence under thermal activation conditions", Environ. Sci. Technol., 42(24), 9350-9356. https://doi.org/10.1021/es8019462
  53. Kanakaraj, P. and Maruthamuthu, P. (1983), "Photochemical reactions of peroxomonosulfate in the presence and absence of 2-propanol", J. Chem. Kinet., 15(12), 1301-1310. https://doi.org/10.1002/kin.550151205
  54. Kennedy, R.J. and Stock, A.M. (1960), "The oxidation of organic substances by potassium peroxymonosulfate", J. Org. Chem., 25(11), 1901-1906. https://doi.org/10.1021/jo01081a019
  55. Khan, J.A., He, X.X., Khan, H.M., Shah, N.S. and Dionysiou, D.D. (2013), "Oxidative degradation of atrazine in aqueous solution by $UV/H_2O_2/Fe^{2+},\;UV/S_2O_8^^{2-}/Fe^{2+}$ and UV/$HSO_5^^-$/$Fe^{2+}$ processes: A comparative study", Chem. Eng. J., 218, 376-383. https://doi.org/10.1016/j.cej.2012.12.055
  56. Khan, S., He, X.X., Khan, H.M., Boccelli, D. and Dionysiou, D.D. (2016), "Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate", J. Photochem. Photobiol. A: Chem., 316, 37-43. https://doi.org/10.1016/j.jphotochem.2015.10.004
  57. Kim, J. and Edwards, J.O. (1995), "A study of cobalt catalysis and copper modification in the coupled decompositions of hydrogen peroxide and peroxomonosulfate ion", Inorg. Chim. Acta, 235(1-2), 9-13. https://doi.org/10.1016/0020-1693(95)90039-9
  58. King, D.W., Lounsbury, H.A. and Millero, F.J. (1995), "Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations", Environ. Sci. Technol., 29(3), 818-824. https://doi.org/10.1021/es00003a033
  59. Klaning, U.K., Sehested, K. and Holcman, J. (1985), "Standard gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for the reaction $ClO_2^^-+O_3{\leftrightarrows}O_3^^-+ClO_2$", J. Phys. Chem., 89(5), 760-763. https://doi.org/10.1021/j100251a008
  60. Kolthoff, I.M. and Miller, I.K. (1951), "The chemistry of persulfate: I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium", J. Am. Chem. Soc., 73(7), 3055-3059. https://doi.org/10.1021/ja01151a024
  61. Kolthoff, I.M., Meehan, E.J. and Carr, E.M. (1953), "Mechanism of initiation of emulsion polymerization by persulfate", J. Am. Chem. Soc., 75(6), 1439-1441. https://doi.org/10.1021/ja01102a048
  62. Koppenol, W.H. and Liebman J.F. (1984), "The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion", J. Phys. Chem., 88(1), 99-101. https://doi.org/10.1021/j150645a024
  63. Kurukutla, A.B., Kumar, P.S.S., Anandan, S. and Sivasankar, T. (2015), "Sonochemical degradation of Rhodamine B using oxidants, hydrogen peroxide / peroxydisulfate / peroxymonosulfate, with $Fe^{2+}$ ion: Proposed pathway and kinetics", Environ. Eng. Sci., 32(2), 129-140. https://doi.org/10.1089/ees.2014.0328
  64. Lente, G., Kalmar, J., Baranyai, Z., Kun, A., Kek, I., Bajusz, D., Takacs, M., Veres, L. and Fabian, I. (2009), "One- versus two-electron oxidation with peroxomonosulfate ion: Reactions with iron(II), vanadium(IV), halide ions and photoreaction with cerium(III)", Inorg. Chem., 48(4), 1763-1773. https://doi.org/10.1021/ic801569k
  65. Levitt, L.S., Levitt, B.W. and Malinowski, E.R. (1962), "The kinetics of the persulfate oxidation of 2-propanol in the presence of other organic compounds", J. Org. Chem., 27(8), 2917-2918. https://doi.org/10.1021/jo01055a503
  66. Li, S.X., Wei, D., Mak, N.K., Cai, Z.W., Xu, X.R., Li, H.B. and Jiang, Y. (2009), "Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism", J. Hazard. Mater., 164(1), 26-31. https://doi.org/10.1016/j.jhazmat.2008.07.110
  67. Liang, C., Bruell, C.J., Marley M.C. and Sperry, K.L. (2003), "Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane in aqueous systems and soil slurries", Soil Sediment Contam., 12(2), 207-228. https://doi.org/10.1080/713610970
  68. Liang, C., Bruell, C.J., Marley, M.C. and Sperry, K.L. (2004a), "Persulfate oxidation for in situ remediation of TCE: I. Activation by ferrous ion with and without a persulfatethiosulfate redox couple", Chemosphere, 55(9), 1213-1223. https://doi.org/10.1016/j.chemosphere.2004.01.029
  69. Liang, C., Bruell, C.J., Marley, M.C. and Sperry, K.L. (2004b), "Persulfate oxidation for in situ remediation of TCE: II. Activated by chelated ferrous ion", Chemosphere, 55(9), 1225-1233. https://doi.org/10.1016/j.chemosphere.2004.01.030
  70. Liang, C., Wang, Z.S. and Bruell, C.J. (2007a), "Influence of pH on persulfate oxidation of TCE at ambient temperatures", Chemopshere, 66(1), 106-113. https://doi.org/10.1016/j.chemosphere.2006.05.026
  71. Liang, C., Huang, C.F., Mohanty, N., Lu, C.J. and Kurakalva, R.M. (2007b), "Hydroxypropyl-${\beta}$-cyclodextrin-mediated ironactivated persulfate oxidation of trichloroethylene and tetrachloroethylene", Ind. Eng. Chem. Res., 46(20), 6466-6479. https://doi.org/10.1021/ie0705148
  72. Liang, C. and Bruell, C.J. (2008), "Thermally activated persulfate oxidation of trichloroethylene: Experimental investigation of reaction orders", Ind. Eng. Chem. Res., 47(9), 2912-2918. https://doi.org/10.1021/ie070820l
  73. Liang, C., Lee, I.L., Hsu, I.Y., Liang, C.P. and Lin, Y.L. (2008a), "Persulfate oxidation of trichloroethylene with and without iron activation in porous media", Chemosphere, 70(3), 426-435. https://doi.org/10.1016/j.chemosphere.2007.06.077
  74. Liang, C., Huang, C.F. and Chen, Y.J. (2008b), "Potential for activated persulfate degradation of BTEX contamination", Water Res., 42(15), 4091-4100. https://doi.org/10.1016/j.watres.2008.06.022
  75. Liang, C. and Su, H.W. (2009), "Identification of sulfate and hydroxyl radicals in thermally activated persulfate", Ind. Eng. Chem. Res., 48(11), 5558-5562. https://doi.org/10.1021/ie9002848
  76. Lunenok-Burmakina, V.A. and Aleeva, G.P. (1972), "Mechanism of the decomposition of peroxomonosulphates and peroxomonophosphates in alkaline aqueous solution", Russ. J. Phys. Chem., 46, 1591-1592.
  77. Manivannan, G. and Maruthamuthu, P. (1986), "Kinetics and mechanism of oxidation of aliphatic and aromatic ketones by peroxomonosulphate", J. Chem. Soc. Perkin Trans. 2, 4, 565-568.
  78. Mariano, M.H. (1968), "Spectrophotometric analysis of sulfuric solutions of hydrogen peroxide, peroxymonosulfuric acid and peroxydisulfuric acid", Anal. Chem., 40(11), 1662-1667. https://doi.org/10.1021/ac60267a016
  79. Marsh, C., Zhang, Z. and Edwards, J.O. (1990), "The cerium(IV)-induced decomposition of peroxymonosulfate: Acid dependence and peroxydisulfate formation", Aust. J. Chem., 43(2), 321-328. https://doi.org/10.1071/CH9900321
  80. Maruthamuthu, P. and Neta, P. (1977), "Radiolytic chain decomposition of peroxomonophosphoric and peroxomonosulfuric acids", J. Phys. Chem., 81(10), 937-940. https://doi.org/10.1021/j100525a001
  81. Maruthamuthu, P. and Neta, P. (1978), "Phosphate radicals: Spectra, acid-base equilibria and reactions with inorganic compounds", J. Phys. Chem., 82(6), 710-713. https://doi.org/10.1021/j100495a019
  82. Matzek, L.W. and Carter, K.E. (2016), "Activated persulfate for organic chemical degradation: A review", Chemosphere, 151, 178-188. https://doi.org/10.1016/j.chemosphere.2016.02.055
  83. McElroy, W.J. and Waygood, S.J. (1990), "Kinetics of the reactions of the $SO_4^^-$ radical with $SO_4^^-$, $S_2O_8^{2-}$, H2O and $Fe^{2+}$", J. Chem. Soc. Faraday Trans., 86(14), 2557-2564. https://doi.org/10.1039/ft9908602557
  84. McGinniss, V.D. and Kah, A.F. (1979), "Flash-photolysis of potassium peroxymonosulfate ($KHSO_5$) with generation of sulfate radical-anion and quenching by vinyl monomers", J. Coat. Technol., 51(654), 81-86.
  85. McIsaac, J.E. and Edwards, J.O. (1969), "Kinetics and mechanisms of the oxidation of methanol and of ${\alpha}$-phenylethanol by peroxydisulfate ion", J. Org. Chem., 34(9), 2565-2571. https://doi.org/10.1021/jo01261a018
  86. Meenakshisundaram, S. and Sarathi, N. (2007), "Kinetics and mechanism of oxidation of indole by $HSO_5^^-$", J. Chem. Kinet., 39(1), 46-51. https://doi.org/10.1002/kin.20215
  87. Neta, P., Huie, R.E. and Ross, A.B. (1988), "Rate constants for reactions of inorganic radicals in aqueous solution", J. Phys. Chem. Ref. Data, 17(3), 1027-1284. https://doi.org/10.1063/1.555808
  88. Neta, P., Huie, R.E. and Ross, A.B. (1990), "Rate constants for reactions of peroxyl radicals in fluid solutions", J. Phys. Chem. Ref. Data, 19(2), 413-513. https://doi.org/10.1063/1.555854
  89. Ogata, Y. and Akada, T. (1970), "Kinetics and orientation in the peroxydisulfate oxidation of phenol", Tetrahedron, 26(24), 5945-5951. https://doi.org/10.1016/0040-4020(70)80032-1
  90. Palme, H. (1920). "Studies on the disintegration of sulphuric acid", Z. Anorg. Allgem. Chem., 112(1), 97-130. https://doi.org/10.1002/zaac.19201120105
  91. Pignatello, J.J., Oliveros, E. and MacKay, A. (2006), "Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry", Crit. Rev. Environ. Sci. Technol., 36(1), 1-84. https://doi.org/10.1080/10643380500326564
  92. Rastogi, A., Al-Abed, S.R. and Dionysiou, D.D. (2009), "Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems", Appl. Cat. B: Environ., 85(3-4), 171-179. https://doi.org/10.1016/j.apcatb.2008.07.010
  93. Renganathan, R. and Maruthamuthu, P. (1986), "Kinetics and mechanism of oxidation of aromatic aldehydes by peroxomonosulphate", J. Chem. Soc. Perkin Trans. 2, 2, 285-289.
  94. Roebke, W., Renz, M. and Henglein, A. (1969), "Pulseradiolyse der anionen $S_2O_8^{2-}$ und $HSO_5^^-$ in Wassriger Losung", J. Radiat. Phys. Chem., 1(1), 39-44. https://doi.org/10.1016/0020-7055(69)90021-7
  95. Rothschild, W.G. and Allen, A.O. (1958), "Studies in the radiolysis of ferrous sulfate solutions III: Air-free solutions at higher pH", Radiat. Res., 8(2), 101-110. https://doi.org/10.2307/3570600
  96. Rush, J.D. and Bielski, B.H.J. (1985), "Pulse radiolytic studies of the reactions of $HO_2/O_2^-$ with Fe(II)/Fe(III) ions: The reactivity of $HO_2/O_2^-$ with ferric ions and its implication on the occurrence of the Harber-Weiss reaction", J. Phys. Chem., 89(23), 5062-5066. https://doi.org/10.1021/j100269a035
  97. Schuchmann, M.N. and von Sonntag, C. (1979), "Hydroxyl radical-induced oxidation of 2-methyl-2propanol in oxygenated aqueous solution: A product and pulse radiolysis study", J. Phys. Chem., 83(7), 780-784. https://doi.org/10.1021/j100470a004
  98. Schuchmann, H.P., Deeble, D.J., Olbrich, G. and von Sontag, C. (1987), "The $SO_4^^{{\cdot}-}$-induced chain reaction of 1,3-dimethyluracil with peroxodisulphate", J. Radiat. Biol., 51(3), 441-453.
  99. Schumb, W.C. and Rittner, E.S. (1940), "The effect of the application of sonic energy to the hydrolysis of potassium persulfate", J. Am. Chem. Soc., 62(12), 3416-3420. https://doi.org/10.1021/ja01869a036
  100. Schwarz, H.A. and Dodson, R.W. (1984), "Equilibrium between hydroxyl radicals and Thallium(II) and the oxidation potential of OH(aq)", J. Phys. Chem., 88(16), 3643-3647. https://doi.org/10.1021/j150660a053
  101. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L. and Lowe, K.S. (2001), Principles and Practices of In Situ Chemical Oxidation Using Permanganate, Battelle Press, Columbus, OH, U.S.A.
  102. Singh, U.C. and Venkatarao, K. (1976), "Decomposition of Peroxodisulphate in Aqueous Alkaline Solution", J. Inorg. Nucl. Chem., 38(3), 541-543. https://doi.org/10.1016/0022-1902(76)80300-4
  103. Smith, W.V. and Campbell, H.N. (1947), "The detection of radioactive persulfate fragments in emulsion polymerized styrene", J. Chem. Phys., 15(5), 338. https://doi.org/10.1063/1.1746516
  104. Spiro, M. (1979), "The standard potential of the peroxosulphate/sulphate couple", Electrochim. Acta, 24(3), 313-314. https://doi.org/10.1016/0013-4686(79)85051-3
  105. Srivastava, S.P. Gupta, V. K., Sharma, R.G. and Singh, K.P. (1984), "Kinetics of Ag(I) catalyzed oxidation of dioxane by peroxydisulfate", React. Kinet. Catal. Lett., 24(1-2), 167-172. https://doi.org/10.1007/BF02069622
  106. Srivastava, S.P., Maheshwari, G.L. and Singhal, S.K. (1974), "Kinetics of oxidation of benzaldehyde by peroxydisulfate", Indian J. Chem., 12(1), 72-74.
  107. Steele, W.V. and Appelman, E.H. (1982), "The standard enthalpy of formation of peroxymonosulfate ($HSO_5^^-$) and the standard electrode potential of the peroxymonosulfate-bisulfate couple", J. Chem. Thermodyn., 14(4), 337-344. https://doi.org/10.1016/0021-9614(82)90052-0
  108. Tang, Y., Thorn, R.P., Mauldin, R.L. III and Wine, P.H. (1988), "Kinetics and spectroscopy of the $SO_4^^-$ radical in aqueous solution", J. Photochem. Photobiol. A: Chem., 44(3), 243-258. https://doi.org/10.1016/1010-6030(88)80097-2
  109. Thompson, R.C. (1981), "Catalytic decomposition of peroxymonosulfate in aqueous perchloric acid by the dual catalysts $Ag^+$ and $S_2O_8^{2-}$ and by $Co^{2+}$", Inorg. Chem., 20(4), 1005-1010. https://doi.org/10.1021/ic50218a012
  110. Tsitonaki, A., Petri, B., Crimi, M., Mosbæk, H., Siegrist, R.L. and Bjerg, P.L. (2010), "In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review", Crit. Rev. Environ. Sci. Technol., 40(1), 55-91. https://doi.org/10.1080/10643380802039303
  111. von Gunten, U. (2003a), "Ozonation of drinking water: Part I. Oxidation kinetics and product formation", Water Res., 37(7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8
  112. von Gunten, U. (2003b), "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine", Water Res., 37(7), 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X
  113. von Gunten, U. (2018), "Oxidation processes in water treatment: Are we on track?", Environ. Sci. Technol., 52(9), 5062-5075. https://doi.org/10.1021/acs.est.8b00586
  114. Waclawek, S., Lutze, H.V., Grubel, K., Padil, V.V.T., Cernik, M. and Dionysiou, D.D. (2017), "Chemistry of persulfates in water and wastewater treatment: A review", Chem. Eng. J., 330, 44-62. https://doi.org/10.1016/j.cej.2017.07.132
  115. Waldemer, R.H., Tratnyek, P.G., Johnson, R.L. and Nurmi, J.T. (2007), "Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products", Environ. Sci. Technol., 41(3), 1010-1015. https://doi.org/10.1021/es062237m
  116. Walling, C. and Goosen, A. (1973), "Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide", J. Am. Chem. Soc., 95(9), 2987-2991. https://doi.org/10.1021/ja00790a042
  117. Wang, J.L. and Wang, S.Z. (2018), "Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants", Chem. Eng. J., 334, 1502-1517. https://doi.org/10.1016/j.cej.2017.11.059
  118. Wang, Y.R. and Chu, W. (2011), "Degradation of a xanthene dye by Fe(II)-mediated activation of Oxone process", J. Hazard. Mater., 186(2-3), 1455-1461. https://doi.org/10.1016/j.jhazmat.2010.12.033
  119. Watts, R.J., Ahmad, M., Hohner, A.K. and Teel, A.L. (2018), "Persulfate activation by glucose for in situ chemical oxidation", Water Res., 133, 247-254. https://doi.org/10.1016/j.watres.2018.01.050
  120. Wilmarth, W.K., Schwartz, N. and Giuliano, C.R. (1983), "The aqueous chemistry of peroxydisulfate ion: VII. The free radical induced chain hydrogenation", Coord. Chem. Rev., 51(2), 243-265. https://doi.org/10.1016/0010-8545(83)85014-0
  121. Wine, P.H., Mauldin, R.L.III and Thorn, R.P. (1988), "Kinetics and spectroscopy of the $NO_3$ radical in aqueous ceric nitratenitric acid solutions", J. Phys. Chem., 92(5), 1156-1162. https://doi.org/10.1021/j100316a031
  122. Xiao, R., Ye, T., Wei, Z., Luo, S., Yang, Z. and Spinney, R. (2015), "Quantitative structure-activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical", Environ. Sci. Technol., 49(22), 13394-13402. https://doi.org/10.1021/acs.est.5b03078
  123. Yang, Q., Choi, H., Al-Abed, S.R. and Dionysiou, D.D. (2009), "Iron-cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching and ferromagnetic properties for environmental applications", Appl. Cat. B: Environ., 88(3-4), 462-469. https://doi.org/10.1016/j.apcatb.2008.10.013
  124. Yang, Y., Banerjee, G., Brudvig, G.W., Kim, J.H. and Pignatello, J.J. (2018), "Oxidation of organic compounds in water by unactivated peroxymonosulfate", Environ. Sci. Technol., 52(10), 5911-5919. https://doi.org/10.1021/acs.est.8b00735
  125. Yu, X.Y., Bao, Z.C. and Barker, J.R. (2004), "Free radical reactions involving Cl., $Cl_2^^-$. and $SO_4^^-$. in the 248 nm photolysis of aqueous solutions containing $S_2O_8^{2-}$ and $Cl^-$", J. Phys. Chem. A, 108(2), 295-308. https://doi.org/10.1021/jp036211i
  126. Zhang, Z. and Edwards, J.O. (1992), "Chain lengths in the decomposition of peroxomonosulfate catalyzed by cobalt and vanadium. Rate law for catalysis by vanadium", Inorg. Chem., 31(17), 3514-3517. https://doi.org/10.1021/ic00043a007
  127. Zhao, Q.X., Mao, Q.M., Zhou, Y.Y., Wei, J.H., Liu, X.C., Yang, J.Y., Luo, L., Zhang, J.C., Chen, H., Chen, H.B. and Tang, L. (2017), "Metal-free carbon materials-catalyzed sulfate radicalbased advanced oxidation processes: A review on heterogeneous catalysts and applications", Chemosphere, 189, 224-238. https://doi.org/10.1016/j.chemosphere.2017.09.042
  128. Zhou, Y., Jiang, J., Gao, Y., Ma, J., Pang, S.Y., Li, J., Lu, X.T. and Yuan, L.P. (2015), "Activation of peroxymonosulfate bybenzoquinone: A novel nonradical oxidation process", Environ. Sci. Technol., 49(21), 12941-12950. https://doi.org/10.1021/acs.est.5b03595
  129. Zhou, Y., Jiang, J., Gao, Y., Pang, S.Y., Yang, Y., Ma, J., Gu, J., Li, J., Wang, Z., Wang, L.H., Yuan, L.P. and Yang, Y. (2017), "Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen", Water Res., 125, 209-218. https://doi.org/10.1016/j.watres.2017.08.049
  130. Zou, J., Ma, J., Chen, L.W., Li, X.C., Guan, Y.H., Xie, P.C. and Pan, C. (2013), "Rapid acceleration of ferrous Iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine', Environ. Sci. Technol., 47(20), 11685-11691. https://doi.org/10.1021/es4019145
  131. Zhu, W. and Ford, W.T. (1991), "Oxidation of alkenes with aqueous potassium peroxymonosulfate and no organic solvent", J. Org. Chem., 56(25), 7022-7026. https://doi.org/10.1021/jo00025a014