References
- G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, 2016.
- R. Bullough, B. Eyre, R. Perrin, The growth and stability of voids in irradiated metals, Nucl. Appl. Technol. 9 (1970) 346-355. https://doi.org/10.13182/NT70-A28789
- S. Chen, B. Liu, L. Lin, G. Jiao, Microstructural development and helium bubble formation in Cu/W (Re) nanometer multilayer films irradiated by He+ ion, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 354 (2015) 244-248. https://doi.org/10.1016/j.nimb.2015.01.003
- R. Hengstler-Eger, P. Baldo, L. Beck, J. Dorner, K. Ertl, P. Hoffmann, C. Hugenschmidt, M. Kirk, W. Petry, P. Pikart, Heavy ion irradiation induced dislocation loops in AREVA's M5(R) alloy, J. Nucl. Mater. 423 (2012) 170-182. https://doi.org/10.1016/j.jnucmat.2012.01.002
- Y. Idrees, Z. Yao, M. Kirk, M. Daymond, In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater. 433 (2013) 95-107. https://doi.org/10.1016/j.jnucmat.2012.09.014
- C. Chow, R. Holt, C. Woo, C. So, Deformation of zirconium irradiated by 4.4 MeV protons at 347 K, J. Nucl. Mater. 328 (2004) 1-10. https://doi.org/10.1016/j.jnucmat.2004.01.017
- J. Kai, W. Huang, H. Chou, The microstructural evolution of zircaloy-4 subjected to proton irradiation, J. Nucl. Mater. 170 (1990) 193-209. https://doi.org/10.1016/0022-3115(90)90412-G
- D.J. Bacon, Y.N. Osetsky, R. Stoller, R.E. Voskoboinikov, MD description of damage production in displacement cascades in copper and a-iron, J. Nucl. Mater. 323 (2003) 152-162. https://doi.org/10.1016/j.jnucmat.2003.08.002
- F. Gao, D. Bacon, L. Howe, C. So, Temperature-dependence of defect creation and clustering by displacement cascades in a-zirconium, J. Nucl. Mater. 294 (2001) 288-298. https://doi.org/10.1016/S0022-3115(01)00483-4
- R. Voskoboinikov, Y.N. Osetsky, D. Bacon, Identification and morphology of point defect clusters created in displacement cascades in a-zirconium, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 242 (2006) 530-533. https://doi.org/10.1016/j.nimb.2005.08.167
- S. Wooding, L. Howe, F. Gao, A. Calder, D. Bacon, A molecular dynamics study of high-energy displacement cascades in a-zirconium, J. Nucl. Mater. 254 (1998) 191-204. https://doi.org/10.1016/S0022-3115(97)00365-6
- G. Ackland, S. Wooding, D. Bacon, Defect, surface and displacement-threshold properties of a-zirconium simulated with a many-body potential, Philos. Mag. A 71 (1995) 553-565. https://doi.org/10.1080/01418619508244468
- N. De Diego, A. Serra, D. Bacon, Y.N. Osetsky, On the structure and mobility of point defect clusters in alpha-zirconium: a comparison for two interatomic potential models, Model. Simulat. Mater. Sci. Eng. 19 (2011) 035003. https://doi.org/10.1088/0965-0393/19/3/035003
- H. Khater, D. Bacon, Dislocation core structure and dynamics in two atomic models of a-zirconium, Acta Mater. 58 (2010) 2978-2987. https://doi.org/10.1016/j.actamat.2010.01.028
- A. Barrow, A. Korinek, M. Daymond, Evaluating zirconiumezirconium hydride interfacial strains by nano-beam electron diffraction, J. Nucl. Mater. 432 (2013) 366-370. https://doi.org/10.1016/j.jnucmat.2012.08.003
- S. Di, Z. Yao, M.R. Daymond, F. Gao, Molecular dynamics simulations of irradiation cascades in alpha-zirconium under macroscopic strain, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 303 (2013) 95-99. https://doi.org/10.1016/j.nimb.2013.01.048
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
- M.I. Mendelev, G.J. Ackland, Development of an interatomic potential for the simulation of phase transformations in zirconium, Phil. Mag. Lett. 87 (2007) 349-359. https://doi.org/10.1080/09500830701191393
- C. Domain, Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys, J. Nucl. Mater. 351 (2006) 1-19. https://doi.org/10.1016/j.jnucmat.2006.02.025
- C. Domain, A. Legris, Ab initio atomic-scale determination of point-defect structure in hcp zirconium, Philos. Mag. 85 (2005) 569-575. https://doi.org/10.1080/14786430412331334625
- J. Biersack, J. Ziegler, Refined universal potentials in atomic collisions, Nucl. Instrum. Meth. Phys. Res. 194 (1982) 93-100. https://doi.org/10.1016/0029-554X(82)90496-7
- S. Wooding, D. Bacon, A molecular dynamics study of displacement cascades in a-zirconium, Philos. Mag. A 76 (1997) 1033-1051. https://doi.org/10.1080/01418619708200013
- P.K. Nandi, J. Eapen, Cascade overlap in hcp zirconium: defect accumulation and microstructure evolution with radiation using molecular dynamics simulations, MRS Online Proc. Libr. Arch. 1514 (2013) 37-42.
- ASTM E521-96, Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation, American Society of Testing and Materials, Philadelphia, PA, 2009.
- W. Setyawan, G. Nandipati, K.J. Roche, H.L. Heinisch, B.D. Wirth, R.J. Kurtz, Displacement cascades and defects annealing in tungsten, Part I: defect database from molecular dynamics simulations, J. Nucl. Mater. 462 (2015) 329-337. https://doi.org/10.1016/j.jnucmat.2014.12.056
- N.P. Lazarev, A.S. Bakai, Atomistic simulation of primary damages in Fe, Ni and Zr, J. Supercrit. Fluids 82 (2013) 22-26. https://doi.org/10.1016/j.supflu.2013.06.002
- D. Bacon, A. Calder, F. Gao, Defect production due to displacement cascades in metals as revealed by computer simulation, J. Nucl. Mater. 251 (1997) 1-12. https://doi.org/10.1016/S0022-3115(97)00216-X
- B. Beeler, M. Asta, P. Hosemann, N. Gronbech-Jensen, Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron, J. Nucl. Mater. 474 (2016) 113-119. https://doi.org/10.1016/j.jnucmat.2016.03.017
- J. Guenole, A. Prakash, E. Bitzek, Influence of intrinsic strain on irradiation induced damage: the role of threshold displacement and surface binding energies, Mater. Des. 111 (2016) 405-413. https://doi.org/10.1016/j.matdes.2016.08.077
Cited by
- Atomistic simulations for the effects of stacking fault energy on defect formations by displacement cascades in FCC metals under Poisson’s deformation vol.54, pp.16, 2019, https://doi.org/10.1007/s10853-019-03688-1
- Quantifying the impact of an electronic drag force on defect production from high-energy displacement cascades in α-zirconium vol.542, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2020.152539
- Study on displacement cascade and tensile simulation by molecular dynamics: Formation and properties of point defects vol.35, pp.10, 2018, https://doi.org/10.1142/s021797922150140x
- Defect cluster configurations and mobilities in α-Zr: A comparison of the BMD19 and M07 interatomic potentials vol.559, pp.None, 2022, https://doi.org/10.1016/j.jnucmat.2021.153441