DOI QR코드

DOI QR Code

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H. (Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University) ;
  • Hosseini-Hashemi, S.H. (School of mechanical Engineering Iran university of Science and Technology) ;
  • Maghsoudpour, A. (Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University)
  • Received : 2018.07.13
  • Accepted : 2018.10.08
  • Published : 2018.11.25

Abstract

This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

Keywords

References

  1. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi A. (2016) "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  2. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  3. Alijani, F. and Amabili, M. (2014), "Non-linear static bending and forced vibrations of rectangular plates retaining non-linearities in rotations and thickness deformation", Int. J. Nonlinear Mech., 67, 394-404. https://doi.org/10.1016/j.ijnonlinmec.2014.10.003
  4. Assadi, A. (2013), "Size dependent forced vibration of nanoplates with consideration of surface effects", Appl. Math. Model., 37: 3575-3588. https://doi.org/10.1016/j.apm.2012.07.049
  5. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  6. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  7. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  8. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Hassan, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  9. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  10. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  11. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Advan. Mat. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  12. Bessaim, A., Houari, M.S.A. and Tounsi, A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  13. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  14. Bouafia, Kh., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19, 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  15. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016a), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  16. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  17. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016b), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  18. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  19. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  20. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  21. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  22. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186 https://doi.org/10.1016/j.engstruct.2003.09.005
  23. Dai, H.L., Zhao, D.M., Zou, J.J. and Wang, L. (2016), "Surface effect on the nonlinear forced vibration of cantilevered nanobeams", Physica E, 80, 25-30. https://doi.org/10.1016/j.physe.2016.01.008
  24. Dey, T. and Ramachandra, L.S. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018
  25. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11, 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  26. El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  27. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites Potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  28. Farokhi, H. and Ghayesh, M.H. (2015a), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
  29. Farokhi, H. and Ghayesh, M.H. (2015b), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
  30. Fernandes, R., Mahmoud Mousavi, S. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mech., 227, 2657-2670. https://doi.org/10.1007/s00707-016-1646-x
  31. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
  32. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Threedimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
  33. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
  34. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006
  35. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013e), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
  36. Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013f), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
  37. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B: Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074
  38. Ghayesh, M.H. and Farokhi, H. (2015a), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004
  39. Ghayesh, M.H. and Farokhi, H. (2015b), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004
  40. Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003
  41. Ghayesh, M.H. (2018a), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. International Journal of Mechanical Sciences, https://doi.org/10.1016/j.ijmecsci.2018.02.037
  42. Ghayesh, M.H. (2018b), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
  43. Ghayesh, M.H. (2018c), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
  44. Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dynam., 79, 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
  45. He, X.Q., Wang, J.B., Liu, B. and Liew, K.M. (2012), "Analysis of nonlinear forced vibration of multi-layered graphene sheets", Comput. Mat. Sci., 61, 194-199 . https://doi.org/10.1016/j.commatsci.2012.03.043
  46. Javanbakht, M., Daneshmehr, A.R., Shakeri, M. and Nateghi, A. (2012), "The dynamic analysis of the functionally graded piezoelectric (FGP) shell panel based on three-dimensional elasticity theory", Appl. Math. Model., 36, 5320-5333. https://doi.org/10.1016/j.apm.2011.12.022
  47. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  48. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  49. Larbi Chaht, F., Kaci, A., Houari M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  50. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
  51. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  52. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Method. Appl. M., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
  53. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  54. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  55. Motallebi, A., Irani, S. and Sazesh, S. (2016), "Analysis on jump and bifurcation phenomena in the forced vibration of nonlinear cantilever beam using HBM", J. Braz. Soc. Mech. Sci. Eng., 38: 515-524. https://doi.org/10.1007/s40430-015-0352-2
  56. Mouffoki, A., Adda Bedia, E.A., Houari M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  57. Pasha Zanoosi, A.A., Haghpanahi, M. and Kalantarinejad, R. (2017), "Analyzing free and forced vibration of flexible polyurethane foam using multiple time scales method", J. Braz. Soc. Mech. Sci. Eng., 39, 207-217. https://doi.org/10.1007/s40430-016-0669-5
  58. Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55, 495-533. https://doi.org/10.1115/1.1490129
  59. Rafiee, M., Mohammadi, M., Sobhani Aragh, B. and Yaghoobi, H. (2013), "Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells", Compos. Struct., 103, 179-187. https://doi.org/10.1016/j.compstruct.2012.12.053
  60. Rougui, M., Moussaoui, F. and Benamar, R. (2007), "Geometrically non-linear free and forced vibrations of simply supported circular cylindrical shells", Int. J. Nonlinear Mech., 42, 1102-1115. https://doi.org/10.1016/j.ijnonlinmec.2007.06.004
  61. Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1998), Physical Properties of Carbon Nanotubes Imperial College Press, London.
  62. Shi, D.L. and Feng, X.Q. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composite", J. Eng. Mat. Tech. ASME, 126, 250-270. https://doi.org/10.1115/1.1751182
  63. Shokravi, M. and Jalili, N. (2017), "Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubesreinforced sandwich microplates considering structural damping", Smart Struct. Syst., 20(5), 583-593. https://doi.org/10.12989/SSS.2017.20.5.583
  64. Shokrollahi, H., Kargarnovin, M.H. and Fallah, F. (2015), "Deformation and stress analysis of sandwich cylindrical shells with a flexible core using harmonic differential quadrature method", J. Braz. Soc. Mech. Sci. Eng., 37, 325-337. https://doi.org/10.1007/s40430-014-0183-6
  65. Shooshtari, A. and Rafiee, M. (2011), "Nonlinear forced vibration analysis of clamped functionally graded beams", Acta Mech., 29, 221-223.
  66. Simsek, M. and Kocaturk, T. (2009), "Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load", J. Sound Vib., 320, 235-253. https://doi.org/10.1016/j.jsv.2008.07.012
  67. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  68. Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory", Compos. Struct., 160, 408-421. https://doi.org/10.1016/j.compstruct.2016.10.034
  69. Sofiyev, A.H. (2016), "Nonlinear free vibration of shear deformable orthotropic functionally graded cylindrical shells", Comput. Struct., 142, 35-44. https://doi.org/10.1016/j.compstruct.2016.01.066
  70. Tadi Beni, Y., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of the modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
  71. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  72. Xiaodong, Y. and Qun, C.L. (2006), "Non-linear forced vibration of axially moving viscoelastic beams", Act. Mech. Solid Sinic., 19, 365-373 . https://doi.org/10.1007/s10338-006-0643-3
  73. Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instability beyond linear response", Phys. Rev Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
  74. Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84: 5552-5555. https://doi.org/10.1103/PhysRevLett.84.5552
  75. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  76. Zidi, M., Tounsi, A., and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
  2. Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.181