References
- Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi A. (2016) "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Alijani, F. and Amabili, M. (2014), "Non-linear static bending and forced vibrations of rectangular plates retaining non-linearities in rotations and thickness deformation", Int. J. Nonlinear Mech., 67, 394-404. https://doi.org/10.1016/j.ijnonlinmec.2014.10.003
- Assadi, A. (2013), "Size dependent forced vibration of nanoplates with consideration of surface effects", Appl. Math. Model., 37: 3575-3588. https://doi.org/10.1016/j.apm.2012.07.049
- Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
- Belkorissat, I., Houari, M.S.A., Tounsi, A. and Hassan, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Advan. Mat. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bessaim, A., Houari, M.S.A. and Tounsi, A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
- Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
- Bouafia, Kh., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19, 115-126. https://doi.org/10.12989/sss.2017.19.2.115
- Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016a), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016b), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
- Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186 https://doi.org/10.1016/j.engstruct.2003.09.005
- Dai, H.L., Zhao, D.M., Zou, J.J. and Wang, L. (2016), "Surface effect on the nonlinear forced vibration of cantilevered nanobeams", Physica E, 80, 25-30. https://doi.org/10.1016/j.physe.2016.01.008
- Dey, T. and Ramachandra, L.S. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018
- Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11, 671-690. https://doi.org/10.12989/gae.2016.11.5.671
- El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites Potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Farokhi, H. and Ghayesh, M.H. (2015a), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
- Farokhi, H. and Ghayesh, M.H. (2015b), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
- Fernandes, R., Mahmoud Mousavi, S. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mech., 227, 2657-2670. https://doi.org/10.1007/s00707-016-1646-x
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Threedimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013e), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
- Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013f), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B: Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074
- Ghayesh, M.H. and Farokhi, H. (2015a), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004
- Ghayesh, M.H. and Farokhi, H. (2015b), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004
- Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003
- Ghayesh, M.H. (2018a), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. International Journal of Mechanical Sciences, https://doi.org/10.1016/j.ijmecsci.2018.02.037
- Ghayesh, M.H. (2018b), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
- Ghayesh, M.H. (2018c), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
- Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dynam., 79, 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
- He, X.Q., Wang, J.B., Liu, B. and Liew, K.M. (2012), "Analysis of nonlinear forced vibration of multi-layered graphene sheets", Comput. Mat. Sci., 61, 194-199 . https://doi.org/10.1016/j.commatsci.2012.03.043
- Javanbakht, M., Daneshmehr, A.R., Shakeri, M. and Nateghi, A. (2012), "The dynamic analysis of the functionally graded piezoelectric (FGP) shell panel based on three-dimensional elasticity theory", Appl. Math. Model., 36, 5320-5333. https://doi.org/10.1016/j.apm.2011.12.022
- Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
- Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Larbi Chaht, F., Kaci, A., Houari M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Method. Appl. M., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
- Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
- Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Motallebi, A., Irani, S. and Sazesh, S. (2016), "Analysis on jump and bifurcation phenomena in the forced vibration of nonlinear cantilever beam using HBM", J. Braz. Soc. Mech. Sci. Eng., 38: 515-524. https://doi.org/10.1007/s40430-015-0352-2
- Mouffoki, A., Adda Bedia, E.A., Houari M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
- Pasha Zanoosi, A.A., Haghpanahi, M. and Kalantarinejad, R. (2017), "Analyzing free and forced vibration of flexible polyurethane foam using multiple time scales method", J. Braz. Soc. Mech. Sci. Eng., 39, 207-217. https://doi.org/10.1007/s40430-016-0669-5
- Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55, 495-533. https://doi.org/10.1115/1.1490129
- Rafiee, M., Mohammadi, M., Sobhani Aragh, B. and Yaghoobi, H. (2013), "Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells", Compos. Struct., 103, 179-187. https://doi.org/10.1016/j.compstruct.2012.12.053
- Rougui, M., Moussaoui, F. and Benamar, R. (2007), "Geometrically non-linear free and forced vibrations of simply supported circular cylindrical shells", Int. J. Nonlinear Mech., 42, 1102-1115. https://doi.org/10.1016/j.ijnonlinmec.2007.06.004
- Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1998), Physical Properties of Carbon Nanotubes Imperial College Press, London.
- Shi, D.L. and Feng, X.Q. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composite", J. Eng. Mat. Tech. ASME, 126, 250-270. https://doi.org/10.1115/1.1751182
- Shokravi, M. and Jalili, N. (2017), "Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubesreinforced sandwich microplates considering structural damping", Smart Struct. Syst., 20(5), 583-593. https://doi.org/10.12989/SSS.2017.20.5.583
- Shokrollahi, H., Kargarnovin, M.H. and Fallah, F. (2015), "Deformation and stress analysis of sandwich cylindrical shells with a flexible core using harmonic differential quadrature method", J. Braz. Soc. Mech. Sci. Eng., 37, 325-337. https://doi.org/10.1007/s40430-014-0183-6
- Shooshtari, A. and Rafiee, M. (2011), "Nonlinear forced vibration analysis of clamped functionally graded beams", Acta Mech., 29, 221-223.
- Simsek, M. and Kocaturk, T. (2009), "Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load", J. Sound Vib., 320, 235-253. https://doi.org/10.1016/j.jsv.2008.07.012
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress theory", Compos. Struct., 160, 408-421. https://doi.org/10.1016/j.compstruct.2016.10.034
- Sofiyev, A.H. (2016), "Nonlinear free vibration of shear deformable orthotropic functionally graded cylindrical shells", Comput. Struct., 142, 35-44. https://doi.org/10.1016/j.compstruct.2016.01.066
- Tadi Beni, Y., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of the modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
- Xiaodong, Y. and Qun, C.L. (2006), "Non-linear forced vibration of axially moving viscoelastic beams", Act. Mech. Solid Sinic., 19, 365-373 . https://doi.org/10.1007/s10338-006-0643-3
- Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instability beyond linear response", Phys. Rev Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84: 5552-5555. https://doi.org/10.1103/PhysRevLett.84.5552
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zidi, M., Tounsi, A., and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
Cited by
- Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
- Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.181