DOI QR코드

DOI QR Code

Fabrication of Visible-Light Sensitized ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots

  • Kim, Misung (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Bang, Jiwon (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2018.08.24
  • Accepted : 2018.08.25
  • Published : 2018.09.30

Abstract

Colloidal semiconductor quantum dots (QDs), because of the novel optical and electrical properties that stem from their three-dimensional confinement, have attracted great interest for their potential applications in such fields as bio-imaging, display, and opto-electronics. However, many semiconductors that can be exploited for QD applications contain toxic elements. Herein, we synthesized non-toxic ZnTe/ZnSe (core/shell) type-II QDs by pyrolysis method. Because of the unique type-II character of these QDs, their emission can range over an extended wavelength regime, showing photoluminescence (PL) from 450 nm to 580 nm. By optimizing the ZnSe shell growth condition, resulting ZnTe/ZnSe type-II QDs shows PL quantum yield up to ~ 25% with 35 nm PL bandwidth. Using a simple two step cation exchange reaction, we also fabricated ZnTe/ZnSe type-II QDs with absorption extended over the whole visible region. The visible-light sensitized heavy metal free ZnTe/ZnSe type-II QDs can be relevant for opto-electronic applications such as displays, light emitting diodes, and bio-imaging probes.

Keywords

References

  1. M. B. Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor Nanocrystals as Fluorescent Biological Labels," Science, 281 [5385] 2013-16 (1998). https://doi.org/10.1126/science.281.5385.2013
  2. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, "Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites," Adv. Mater., 12 [15] 1102-05 (2000). https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
  3. Y. Jiang, S. Y. Cho, and M. Shim, "Light-Emitting Diodes of Colloidal Quantum Dots and Nanorod Heterostructures for Future Emissive Displays," J. Mater. Chem. C, 6 [11] 2618-34 (2018). https://doi.org/10.1039/C7TC05972H
  4. R. Liu, B. P. Bloom, D. H. Waldeck, P. Zhang, and D. N. Beratan, "Improving Solar Cell Performance Using Quantum Dot Triad Charge-Separation Engines," J. Phys. Chem. C, 122 [11] 5924-34 (2018). https://doi.org/10.1021/acs.jpcc.8b00010
  5. K. S. Cho, K. Heo, C. W. Baik, J. Y. Choi, H. Jeong, S. Hwang, and S. Y. Lee, "Color-Selective Photodetection from Intermediate Colloidal Quantum Dots Buried in Amorphous-Oxide Semiconductors," Nat. Commun., 8 [1] 840 (2017). https://doi.org/10.1038/s41467-017-00893-x
  6. P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, "A Ratiometric CdSe/ZnS Nanocrystal pH Sensor," J. Am. Chem. Soc., 128 [41] 13320-21 (2006). https://doi.org/10.1021/ja0618999
  7. T. T. Xuan, J. Q. Liu, C. Y. Yu, R. J. Xie, and H. L. Li, "Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging," Sci. Rep., 6 24459 (2016). https://doi.org/10.1038/srep24459
  8. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics," Science, 307 [5709] 538-44 (2005). https://doi.org/10.1126/science.1104274
  9. M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, "Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe," Chem. Mater., 8 [1] 173-80 (1996). https://doi.org/10.1021/cm9503137
  10. B. Xing, W. Li, X. Wang, H. Dou, L. Wang, K. Sun, X. He, J. Han, H. Xiao, J. Miao, and Y. Li, "Highly-Fluorescent Alloyed Quantum Dots of $CdSe_{1-x}Te_x$ Synthesized in Paraffin Liquid: Gradient Structure and Promising Bio-Application," J. Mater. Chem., 20 [27] 5664-74 (2010.) https://doi.org/10.1039/c0jm00221f
  11. E. Bang, Y. Choi, J. Cho, Y. H. Suh, H. W. Ban, J. S. Son, and J. Park, "Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum Dots Using Elemental Phosphorus Precursor," Chem. Mater., 29 [10] 4236-43 (2017). https://doi.org/10.1021/acs.chemmater.7b00254
  12. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, "Chemistry of InP Nanocrystal Syntheses," Chem. Mater., 28 [8] 2491-506 (2016). https://doi.org/10.1021/acs.chemmater.5b05044
  13. J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, J. Shin, J. B. Park, J. H. Choi, K. Cho, S. M. Park, T. Joo, and S. Kim, "ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: their Optical and Photovoltaic Properties," Chem. Mater., 22 [1] 233-40 (2010). https://doi.org/10.1021/cm9027995
  14. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov and J. A. Hollingsworth, " "Giant" Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking," J. Am. Chem. Soc., 130 [15] 5026-27 (2008). https://doi.org/10.1021/ja711379k
  15. W. H. Zhang, J. L. Shi, L. Z. Wang, and D. S. Yan, "Preparation and Characterization of ZnO Clusters inside Mesoporous Silica," Chem. Mater., 12 [5] 1408-13 (2000). https://doi.org/10.1021/cm990740a
  16. C. Lincheneau, M. Amelia, M. Oszajca, A. Boccia, F. D'Orazi, M. Madrigale, R. Zanoni, R. Mazzaro, L. Ortolani, V. Morandi, S. Silvi, K. Szaciłowski, and A. Credi, "Synthesis and Properties of ZnTe and ZnTe/ZnS Core/Shell Semiconductor Nanocrystals," J. Mater. Chem. C, 2 [6] 2877-86 (2014). https://doi.org/10.1039/C3TC32385D
  17. J. Y. Woo, J. H. Ko, J. H. Song, K. Kim, H. Choi, Y. H. Kim, D. C. Lee, and S. Jeong, "Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe(100)," J. Am. Chem. Soc., 136 [25] 8883-86 (2014). https://doi.org/10.1021/ja503957r
  18. R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O'Brien, and D. J. Binks, "Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots," Small, 11 [13] 1548-54 (2015). https://doi.org/10.1002/smll.201402264
  19. Y. C. Shih and F. G. Shi, "Quantum Dot Based Enhancement or Elimination of Color Filters for Liquid Crystal Display," IEEE J. Sel. Top. Quantum Electron., 23 [5] 1-4 (2017).
  20. W. Shen, H. Tang, X. Yang, Z. Cao, T. Cheng, X. Wang, Z. Tan, J. You, and Z. Deng, "Synthesis of Highly Fluorescent InP/ZnS Small-Core/Thick-Shell Tetrahedral-Shaped Quantum Dots for Blue Light-Emitting Diodes," J. Mater. Chem. C, 5 [32] 8243-49 (2017). https://doi.org/10.1039/C7TC02927F
  21. J. Zhang; J. Wang, T. Yan, Y. Peng, D. Xu, and D. Deng, "InP/ZnSe/ZnS Quantum Dots with Strong Dual Emissions: Visible Excitonic Emission and Near-Infrared Surface Defect Emission and their Application in in vitro and in vivo Bioimaging," J. Mater. Chem. B, 5 [41] 8152-60 (2017). https://doi.org/10.1039/C7TB02324C
  22. J. Bang, B. Chon, N. Won, J. Nam, T. Joo, and S. Kim, "Spectral Switching of Type-II Quantum Dots by Charging," J. Phys. Chem. C, 113 [16] 6320-23 (2009). https://doi.org/10.1021/jp900530a
  23. H. Li, R. Brescia, R. Krahne, G. Bertoni, M. J. P. Alcocer, C. D'Andrea, F. Scotognella, F. Tassone, M. Zanella, M. De Giorgi, and L. Manna, "Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange," ACS Nano, 6 [2] 1637-47 (2012). https://doi.org/10.1021/nn204601n

Cited by

  1. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots vol.8, pp.4, 2021, https://doi.org/10.1039/d0qi01228a
  2. Design and analysis of a graphene-based Schottky junction solar cell with core/shell quantum dots as spectral downshifter vol.38, pp.3, 2018, https://doi.org/10.1364/josab.414889
  3. Ag-Doped ZnInS/ZnS Core/Shell Quantum Dots for Display Applications vol.4, pp.10, 2021, https://doi.org/10.1021/acsanm.1c01720