DOI QR코드

DOI QR Code

LNG 재기화 공정에서 LNG 누출에 따른 화재 및 폭발사고의 피해영향 분석

Analysis of the Impact of Fire and Explosion Accidents due to LNG Leaks in the LNG Re-gasification Process

  • 이윤호 (목포해양대학교 기관.해양경찰학부)
  • Lee, Yoon-Ho (Division of Marine Engineering & Coast Guard, Mokpo National Maritime University)
  • 투고 : 2018.07.16
  • 심사 : 2018.10.26
  • 발행 : 2018.10.31

초록

본 연구에서는 LNG 공급계통시스템의 재기화 공정에서 배관 손상으로 인한 누출사고 발생시 LNG 성분 및 누출공의 크기에 따른 연소특성에 대한 피해범위를 산출하고, 피해영향을 해석하였다. LNG 성분에 따른 연소특성을 확인하기 위하여 7곳의 LNG 산지별 위험도를 확인한 결과 산지별 큰 차이를 보이지 않았으나, LNG 구성성분 중 메탄의 함유량이 많을수록 플래시화재 발생범위 및 증기운 폭발에 의한 과압이 발생하는 위험범위 그리고 제트화재 발생에 의한 열 복사량 피해영향이 다른 산지에 비해 비교적 낮음을 알 수 있었다. 또한 배관 누출공의 크기에 따라 누설, 파공, 파괴 3단계에 나누어 위험 범위 및 폭발에 미치는 영향에 대한 연구를 수행하였으며, 플래시화재로 인한 피해영향범위를 계산하고, 이에 따라 LNG 누출시 화재가능 위험범위를 확인했으며, 과압의 영향 및 복사열로 부터의 피해범위를 예측할 수 있었다. 이를 통해 LNG 조성 및 배관 누출공의 크기가 화재 및 폭발에 미치는 영향을 예측할 수 있었다.

In this study, one calculated the range of damage to the combustion characteristics according to the composition of LNG and the size of leaking holes, and analyzed the damage effect in case of leakage accidents caused by pipe damage in the re-gasification process for the LNG supply system. In order to confirm the combustion characteristics according to LNG composition, there was no significant difference in the result of risk analysis by LNG-producing areas. However, the higher the methane content of the components, the lower the risk of flash fire, hazardous areas of overpressure due to explosion, and thermal radiation damage caused by jet fire. In addition, one investigated the effect of leakage, holes, and ruptures on the risk range and explosions according to the size of the pipe-leakage hole. Also, the influence of overpressure and the range of damage from radiant heat could be predicted. One confirmed the effect of LNG composition and pipe-leakage size on fire and explosion.

키워드

참고문헌

  1. ALOHA(2013), ALOHA TECHNICAL DOCUMENTATION, November 2013.
  2. Andersen, M. L., N. B. Clausen and P. C. Sames(2011), Costs and Benefits of LNG as Ship Fuel for Container Vessels, Germanischer Lloyd and MAN.
  3. Chemical Safety Agency(2015), ALOHA User Guide.
  4. Comarova, Z. and S. Mangul(2008), Simulation of Emission Dispersion as the Method of Air Quality Management, in Simulation and Assessment of Chemical Processes in a Multiphase Environment, Springer, pp. 403-408.
  5. Dan, S. K., C. J. Lee, J. P. Park, D. G. Shin and E. S. Yoon(2014), Quantitative risk analysis of fire and explosion on the top-side LNG-liquefaction process of LNG-FPSO, Process Safety and Environmental Protection 92, pp. 430-441. https://doi.org/10.1016/j.psep.2014.04.011
  6. Groupe International des Importateurs de Gaz Natural Liquefie (2016), http://www.giignl.org/ (Accessed Jan 6, 2018).
  7. Ha, D. M.(1998), A Study on the Characteristics of Methane and LNG Explosion, The Korean Society of safety, Proceeding of Autumn Conference.
  8. HYSYS(2004), Aspen HYSYS Operation Guide (1,2).
  9. Industrial accident casebook(2000), industrial safety research institute, safety field - technology Resources, Researchers 2000-4-488.
  10. Jo, Y. D.(2017), Estimate Minimum Amount of Methane for Explosion in a Confined Space, Journal of the Korean Institute of Gas Vol. 21, No. 4, pp. 1-5. https://doi.org/10.7842/kigas.2017.21.1.1
  11. Jung, I. G., S. B. Yoo, S. K. Lee and L. H. Kim(1998), Assessment of Gas Release Dispersion and Explosion in Pipeline, Journal of the Korean Institute of Gas, Vol. 2, No. 2, pp. 61-69.
  12. Kim, H. M.(2016), A Study on the development of a comprehensive safety evaluation techniques LNG terminal facilities, Incheon National University Graduate Doctoral Thesis.
  13. Kondo, S., K. Takizawa, A. Takahashi and Tokuhashi, K. (2006), Extended Le Chatelier's Formula for Carbon Dioxide Dilution Effect on Flammability Limits, Journal of Hazardous Materials, A138.
  14. KOSHA Code D-22(2012), Technical Guidance on the Explosion Limit Estimation of Combustible Gas and Vapor Mixtures, Korea Occupational Safety and Health Agency.
  15. KOSHA Code P-14(2000), Technical Guidelines for Leakage Source Modeling, Korea Occupational Safety and Health Agency.
  16. Kumar, S., H. T. Kwon, K. H. Choi, W. S. Lim, J. H. Cho, K. J. Tak and I. Moon(2011), LNG: An eco-friendly cryogenic fuel for sustainable development, Applied Energy, Vol. 88, pp. 4264-4273. https://doi.org/10.1016/j.apenergy.2011.06.035
  17. Lee, S. I.(2015), Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships, Journal of the Korean Society of Marine Engineering, Vol. 39, No. 9 pp. 918-922. https://doi.org/10.5916/jkosme.2015.39.9.918
  18. Lee, Y. S.(1994), Chemical Safety Engineering, pp. 101-106.
  19. Lees, F. P.(1980), Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Butterworths.
  20. https://www.mathesongas.com(2017), Lower and Upper Explosive Limits for Flammable Gases and Vapors (LEL/UEL) (Accessed 22 Dec. 2017).
  21. Park, S. H.(2014), A study on the fire risk assessment of natural gas power plant", The University of Seoul Master Thesis.
  22. Seo, S. W., B. S. Chu, Y. Y. Noh, W. H. Jang, S. I. Lee, Y. T. Seo and D. J. Chang(2017), An economic evaluation of operating expenditures for LNG fuel gas supply systems onboard ocean-going ships considering availability, Ships and Offshore Structures, [Online] Avaliable at: http://dx.doi.org/10.1080/17445302.2014.984389/ (Accessed 22 Jul. 2017).

피인용 문헌

  1. LNG 추진선의 천연가스 배관에서 누출 시나리오에 따른 피해범위에 관한 연구 vol.26, pp.4, 2018, https://doi.org/10.7837/kosomes.2020.26.4.317