DOI QR코드

DOI QR Code

A Study of Sloshing Tank on Vessel Motions with Various Baffle Clearance

탱크 내 격벽에 의한 간극 변화가 선박 운동에 미치는 영향 연구

  • Kim, Kyung Sung (School of Naval Architecture and Ocean Engineering, Tongmyong University) ;
  • Yu, Sunjin (School of Digital Media Engineering, Tongmyong University)
  • 김경성 (동명대학교 조선해양공학부) ;
  • 유선진 (동명대학교 디지털미디어공학부)
  • Received : 2018.05.08
  • Accepted : 2018.10.26
  • Published : 2018.10.31

Abstract

The effects of inner liquid sloshing on vessel motions are a well-known factor. It was investigated experimentally and numerically. In this regard, the study of many efforts to reduce natural phenomena of vessel motions by adopting special devices especially for roll motions. Among many devices, inserting baffles in the inner liquid tank is very common. In this study, one investigated the vessel motions with inner sloshing tanks with baffles inside. For the numerical simulation, one employed a dynamically coupled program between boundary-element-method-based vessel motion analysis program and a particle-based computational fluid dynamics program. Comparing corresponding experimental results validated the dynamically coupled program. The validated coupled program was used to simulate vessel motions, including sloshing effects with various lengths of inner baffles. The simulation results show that not only the filling ratio of inner liquid, but also the length of clearance due to baffles influenced the vessel motions. The significant point of this study was that the natural frequency of vessel motions can be maintained irrespective of the amount of filling ratio through adjustment of the clearance. In a future study, the effects of various numbers of baffles with various clearances would be conducted to percuss the possibility of vessel motion control with inner liquid sloshing effects.

선박의 유체 저장 탱크 내부의 적재용량에 의한 선박 운동 고유 특성의 변화는 많은 실험 과 연구를 통해 밝혀졌다. 또한 이러한 현상에 의한 선박 운동 특성 변화를 최소화하기 위한 장치는 지속적으로 연구 및 개발되고 있으며, 특히 횡동요 운동에 대한 저감효과에 대한 부분이 주를 이루고 있다. 본 연구에서는 이러한 장치 중 하나인 저장탱크 내부의 격벽에 의한 횡동요 저감장치의 길이 변화에 따른 간극의 변화에 의한 선박 운동의 변화를 수치 시뮬레이션 하였다. 본 연구를 위해 경계요소법 기반의 부유체 운동 프로그램과 입자법 기반의 전산유체역학 프로그램이 동적 연성된 프로그램을 사용하였으며, 동적 연성된 프로그램은 동일 실험과의 비교를 통해 검증하였다. 검증된 프로그램은 격벽의 길이를 달리하여 간극에 변화를 준 다양한 경우에 대해 수치 시뮬레이션을 수행하였다. 그 결과 액체 저장률의 변화 및 액체 탱크 내부의 격벽에 의한 간극의 차이에 의해 선박 운동 특성이 변화함을 응답 진폭 함수의 비교를 통해 확인하였다. 주목할 만한 결과로써 적재용량에 따라 변화하는 선박의 운동 특성이 간극을 조정함으로써 동일한 선박 특성을 가지게 됨을 확인하였으며, 이는 격벽에 의한 간극의 조종을 통한 선박 운동 제어가 가능함을 보여준다. 추후 격벽의 수 및 각기 다른 길이를 가진 격벽에 의한 연구를 수행하여 격벽 길이 조정을 통한 선박 운동 특성 제어에 대한 연구를 수행할 계획이다.

Keywords

References

  1. Cho, I. H. and M. H. Kim(2016), Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank, Ocean Engineering, Vol. 126, pp. 364-373. https://doi.org/10.1016/j.oceaneng.2016.09.004
  2. Gaillarde, G., A. Ledoux and M. Lynch(2004), Coupling between liquefied gas and vessel's motion for partially filled tanks: Effect on seakeeping, Design & Operation of Gas Carriers, The Royal Institution of Naval Architects, London, UK.
  3. Kim, K. S., B. H. Lee, M. H. Kim and J. C. Park(2011), Simulation of Sloshing Effect on Vessel Motions by using MPS (Moving Particle Simulation), Computer Modeling in Engineering and Sciences, Vol. 79, No. 3, pp. 201-221.
  4. Kim, K. S., M. H. Kim and J. C. Park(2014), Development of Moving Particle Simulation Method for Multiliquid-Layer Sloshing, Mathematical Problems in Engineering, Vol. 2014, 350165.
  5. Koshizuka, S. and Y. Oka(1996), Moving-Particle semi-implicit method for fragmentation of incompressible fluid, Numerical science and Engineering, Vol. 123, pp. 421-434.
  6. Lee, B. H., J. C. Park and M. H. Kim(2010), Numerical simulation of impact loads using a particle method, Ocean Engineering, Vol. 37, pp. 164-173. https://doi.org/10.1016/j.oceaneng.2009.12.003
  7. Lee, C. H., J. Newman, M. H. Kim and D. K. Yue(1991), The computation of second-order wave loads, 10th International Conference on Offshore Mechanics and Arctic Engineering, Stavanger, Norway, pp. 113-123.
  8. Lee, S. J. and M. H. Kim(2010), The effects of inner liquid motion on LNG vessel responses, J. of Offshore Mechanics and Arctic Engineering, Vol. 132, No. 2, doi:10.1115/1.4000391.
  9. Marzouk, M. and A. H. Nayfeh(2009), Control of ship roll using passive and active anti-roll tanks, Ocean Engineering, Vol. 36, No. 9, pp. 661-671. https://doi.org/10.1016/j.oceaneng.2009.03.005
  10. Monaghan, J. J.(1988), An Introduction to SPH, Computer Physics Communications, Vol. 48, pp. 89-99. https://doi.org/10.1016/0010-4655(88)90026-4
  11. Nomura, K., S. Koshizuka, A. Oka and H. Obata(2001), Numerical Analysis of Droplet Breakup Behavior Using Particle Method, J Nucl Sci Technol, 38(12), pp. 1057-1064. https://doi.org/10.1080/18811248.2001.9715136
  12. Tanaka, M. and T. Masunaga(2010), Stabilization and Smoothing of Pressure in MPS Method by Quasi-compressibility, Journal of Computational Physics, Vol. 229, No. 11, pp. 4279-4290. https://doi.org/10.1016/j.jcp.2010.02.011
  13. Xu, R., P. Stansby and D. Laurence(2009), Accuracy and Stability in Incompressible SPH (ISPH) Based on the Projection Method and a New Approach, Journal of Computational Physics, Vol. 228, No. 18, pp. 6703-6725. https://doi.org/10.1016/j.jcp.2009.05.032
  14. Yang, C. K. and M. H. Kim(2011), The Structural safety assessment of a tie-down system on a tension leg platform during hurricane events, Ocean Systems Engineering, An International Journal Vol. 1, No. 4, pp. 263-293. https://doi.org/10.12989/ose.2011.1.4.263