DOI QR코드

DOI QR Code

The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation

  • 투고 : 2017.12.19
  • 심사 : 2018.09.26
  • 발행 : 2018.11.25

초록

In the present paper, we offer a new flat shell finite element. It is the result of the combination of a membrane element and a bending element, both based on the strain-based formulation. It is known that $C^{\circ}$ plane membrane elements provide poor deflection and stress for problems where bending is dominant. In addition, they encounter continuity and compliance problems when they connect to C1 class plate elements. The reach of the present work is to surmount these problems when a membrane element is coupled with a thin plate element in order to construct a shell element. The membrane element used is a triangular element with four nodes, three nodes at the vertices of the triangle and the fourth one at its barycenter. Each node has three degrees of freedom, two translations and one rotation around the normal. The coefficients related to the degrees of freedom at the internal node are subsequently removed from the element stiffness matrix by using the static condensation technique. The interpolation functions of strain, displacements and stresses fields are developed from equilibrium conditions. The plate element used for the construction of the present shell element is a triangular four-node thin plate element based on Kirchhoff plate theory, the strain approach, the four fictitious node, the static condensation and the analytic integration. The shell element result of this combination is robust, competitive and efficient.

키워드

참고문헌

  1. Abderrahmani, S., Maalam, T. and Hamadi, D. (2016), "On improved thin plate bending rectangular finite element based on the strain approach'', Int. J. Eng. Res. Afr., 27, 76-86. https://doi.org/10.4028/www.scientific.net/JERA.27.76
  2. Barik, M. and Mukhopadhyay, M. (2002), "A new stiffened plate element for the analysis of arbitrary plates'', Thin-Wall. Struct., 40(7), 625-639. https://doi.org/10.1016/S0263-8231(02)00016-2
  3. Batoz, J.L. (1977), "Analyse non lineaire de coques minces elastiques de formes arbitraires par elements triangulaires courbes'', These de Doctorat, Faculte des sciences et de genie civil, Quebec, 372.
  4. Batoz, J.L. and Dhatt, G. (1990), Modelisation Des Structures Par Elements Finis: Solides Elastiques, Presses Universite Laval, 1.
  5. Belarbi M.T. (2000), "Developpement de nouveaux elements a modele en deformation: Application lineaire et non lineaire'', These de Doctorat, Universite de Constantine, Algerie.
  6. Belarbi, M.T. and Charif, A. (1999), "Developpement d'un nouvel element hexaedrique simple base sur le modele en deformation pour l'etude des plaques minces et epaisses'', Revue Europeenne des elements Finis, 8(2), 135-157. https://doi.org/10.1080/12506559.1999.10511361
  7. Belytschko, T., Ong, J.S.J., Liu, W.K. and Kennedy, J.M. (1984), "Hourglass control in linear and nonlinear problems", Comput. Meth. Appl. Mech. Eng., 43(3), 251-276. https://doi.org/10.1016/0045-7825(84)90067-7
  8. Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N. and Ong, J.S. (1985), "Stress projection for membrane and shear locking in shell finite elements'', Comput. Meth. Appl. Mech. Eng., 51(1), 221-258. https://doi.org/10.1016/0045-7825(85)90035-0
  9. Bentaher, M. (1981), "Analyse elastoplastique des plaques et coques minces par elements finis'', These de 3eme cycle, Universite de Technologie de Compiegne, 130.
  10. Bhothikhun, P. and Dechaumphai, P. (2014), "Adaptive DKT finite element for plate bending analysis of built-up structures'', Int. J. Mech. Mechatron. Eng., 14(1), 12-20.
  11. Bonnes, G. (1969), "Analyse des Voiles Mz par elements finis courbes'', Ph.D. Dissertation, Universite Laval, Canada.
  12. Boutagouga D. (2008), "Analyse non-lineaire geometrique et materielle des coques par un element quadrilatere avec ddl rotationnel dit (Drilling rotation)'', Memoire de Magister, Universite Badji mokhtar Annaba.
  13. Boutagouga, D. and Djeghaba, K. (2016), "Nonlinear dynamic corotational formulation for membrane elements with in-plane drilling rotational degree of freedom", Eng. Comput., 33(3), 667-697. https://doi.org/10.1108/EC-02-2015-0030
  14. Boutagouga, D. (2016), "A new enhanced assumed strain quadrilateral membrane element with drilling degree of freedom and modified shape functions'', Int. J. Numer. Meth. Eng.
  15. Boutagouga, D., Gouasmia, A. and Djeghaba, K. (2010), "Geometrically nonlinear analysis of thin shell by a quadrilateral finite element with in-plane rotational degrees of freedom'', Eur. J. Comput. Mech./Rev. Eur. Mecan. Numer., 19(8), 707-724. https://doi.org/10.3166/ejcm.19.707-724
  16. Bouzriba, A. and Bouzrira, C. (2015), "Sector element for analysis of thick cylinders exposed to internal pressure and change of temperature'', Građevin., 67(6), 547-555.
  17. Burkardt, J. (2010), FEM Basis Functions for a Triangle, .
  18. Carpenter, N., Stolarski, H. and Belytschko, T. (1985), "A flat triangular shell element with improved membrane interpolation", Int. J. Numer. Meth. Biomed. Eng., 1(4), 161-168.
  19. Carpenter, N., Stolarski, H. and Belytschko, T. (1986), "Improvements in 3-node triangular shell elements'', Int. J. Numer. Meth. Eng., 23(9), 1643-1667. https://doi.org/10.1002/nme.1620230906
  20. Chetty, S. and Tottenham, H. (1964), "An investigation into the bending analysis of hyperbolic paraboloide shells'', Ind. Concrete J., 248-258.
  21. Chinosi, C. (2005), "PSRI elements for the Reissner-Mindlin free plate", Comput. Struct., 83(31), 2559-2572. https://doi.org/10.1016/j.compstruc.2005.07.005
  22. Dhatt, G.S. (1970), "Instability of thin shells by the finite element method", Proc. IASS Symp., Vienna, Austria.
  23. Donnell, L.H. (1933), Stability of Thin Walled Tubes under Torsion, NACA Report No. 479.
  24. El-Khaldi, F. (1987), "Contribution au traitement des phenomenes de blocage de membrane et cisaillement dans la modelisation des arcs et des coques minces en theorie de marguerre", Ph.D. Dissertation, Villeurbanne, INSA.
  25. Fezans, G. (1981), "Analyse lineaire et non lineaire geometrique des coques par elements finis isoparametriques tridimensionnels degeneres", Ph.D. Dissertation.
  26. Flugge, W. (1960), Stresses in Shells, Springer Verlag, Berlin/Heidelberg/New York.
  27. Forsberg, K. and Hartung, R. (1970), "An evaluation of finite difference and finite element techniques for analysis of general shells", Proceedings of the Symposium on High Speed Computation of Elastic Structures, IUTAM, Liege, Belgium.
  28. Forsberg, K. and Flugge, W. (1966), "Point load on a shallow elliptic paraboloid'', J. Appl. Mech., 33(3), 575-585. https://doi.org/10.1115/1.3625124
  29. Frey, F. (2000), Analyse des Structures et Milieux Continus : Mecanique des Structures, PPUR Presses Polytechniques.
  30. Gallagher, R.H. (1975), "Shell elements", Proceedings of the 1st World Congress on Finite Element Methods in Structural Mechanics, Bournemouth, U.K.
  31. Geoffroy, P. (1983), "Developpement et evaluation d'un element fini pour l'analyse non lineaire statique et dynamique de coques minces'', Ph.D. Dissertation.
  32. Gileva, L., Shaydurov, V. and Dobronets, B. (2013), "The triangular Hermite finite element complementing the Bogner-Fox-Schmit rectangle'', Appl. Math., 4(12), 50. https://doi.org/10.4236/am.2013.412A006
  33. Guenfoud, M. (2000), "A new three nodes shell element with transverse shear'', Eng. J. Qatar Univ., 13, 193-221.
  34. Guenfoud, M. (1990), "Deux elements Triangulaires Nouveaux pour L'analyse Lineaire et Non Lineaire Geometrique des Coques'', Ph.D. Dissertation, Villeurbanne, INSA, France.
  35. Guenfoud, M. (1993), "Presentation de l'element DSTM pour le calcul lineaire des coques d'epaisseur quelconque'', Ann. ITBTP, (515), 25-52.
  36. Guenfoud, M. (1996), "A new three nodes shell element with transverse shear'', J. Int. Assoc. Shell Spat. Struct., 37(3), 193-220.
  37. Hamadi, D. (1989), "Numerical and experimental investigation of an elliptical parboloid thin shell structures", Ph.D. Dissertation, City University London, U.K.
  38. Hamadi, D. (2006), "Analysis of structures by non-conforming finite elements" analyse des structures par elements finis non conformes", Ph.D. Dissertation, Universite Mohamed Khider Biskra.
  39. Hamadi, D., Ayoub, A. and Abdelhafid, O. (2016), "A new flat shell finite element for the linear analysis of thin shell structures'', Eur. J. Comput. Mech., 1-24.
  40. Hamadi, D., Ayoub, A. and Maalem, T. (2016), "A new strainbased finite element for plane elasticity problems'', Eng. Comput., 33(2), 562-579. https://doi.org/10.1108/EC-09-2014-0181
  41. Himeur, M. (2008), "Developpement d'elements membranaires nouveaux d'elasticite plane bases sur la formulation en deformation'', Ph.D. Dissertation, These de magistere, Universite de Guelma (Algerie), Departement de Genie Civil.
  42. Himeur, M. and Guenfoud, M. (2008), Element Fini Triangulaire Nouveau a Noeud Central Perturbe en Formulation Deformation Avec Drilling Rotation, CIFMA 3, 21-23, Alep.
  43. Himeur, M. and Guenfoud, M. (2011), "Bending triangular finite element with a fictitious fourth node based on the strain approach", Eur. J. Comput. Mech./Rev. Eur. Mecan. Numer., 20(7-8), 455-485. https://doi.org/10.3166/ejcm.20.455-485
  44. Himeur, M., Benmarce, A. and Guenfoud, M. (2014), "A new finite element based on the strain approach with transverse shear effect", Struct. Eng. Mech., 49(6), 793-810. https://doi.org/10.12989/sem.2014.49.6.793
  45. Himeur, M., Zergua, A. and Guenfoud, M. (2015), "A finite element based on the strain approach using Airy's function'', Arab. J. Sci. Eng., 40(3), 719-733. https://doi.org/10.1007/s13369-014-1543-3
  46. Huang, M., Zhao, Z. and Shen, C. (2010), "An effective planar triangular element with drilling rotation", Fin. Elem. Analy. Des., 46(11), 1031-1036. https://doi.org/10.1016/j.finel.2010.07.019
  47. Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003
  48. Kim, D.N. and Bathe, K.J. (2009), "A triangular six-node shell element", Comput. Struct., 87(23), 1451-1460. https://doi.org/10.1016/j.compstruc.2009.05.002
  49. Ko, Y., Lee, Y., Lee, P.S. and Bathe, K.J. (2017), "Performance of the MITC3+ and the MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193, 187-206. https://doi.org/10.1016/j.compstruc.2017.08.003
  50. Koiter, W. (1960), "A consistent first approximation in the general theory of thin elastic shells", Theor. Thin Elast. Shells, 12-33.
  51. Koiter, W.T. and Simmonds, J.G. (1973), Foundations of Shell Theory, Theoretical and Applied Mechanics, Springer Berlin Heidelberg.
  52. Kugler, S., Fotiu, P.A. and Murin, J. (2010), "A highly efficient membrane finite element with drilling degrees of freedom", Acta Mech., 213(3-4), 323-348. https://doi.org/10.1007/s00707-009-0279-8
  53. Leicester, R.H. (1968), "Finite deformations of shallow shells (Shallow shell deformations based on nonlinear equations solved by Newton-Raphson iteration)", Am. Soc. Civil Eng. Eng. Mech. Div. J., 94, 1409-1423.
  54. Lindberg, G.M., Olson, M.D. and Cowper, G.R. (1969), "New developments in the finite element analysis of shells", Quarterly Bulletin of the Division of Mechanical Engineering and The National Aeronautical Establishment, 4, 1-38.
  55. Papanicolopulos, S.A., Zervos, A. and Vardoulakis, I. (2009), "A three-dimensional $C^{1}$ finite element for gradient elasticity", Int. J. Numer. Meth. Eng., 77(10), 1396-1415. https://doi.org/10.1002/nme.2449
  56. Providas, E. and Kattis, M.A. (2000), "An assessment of two fundamental flat triangular shell elements with drilling rotations", Comput. Struct., 77(2), 129-139. https://doi.org/10.1016/S0045-7949(99)00215-1
  57. Rezaiee-Pajand, M. and Karkon, M. (2014), "Hybrid stress and analytical functions for analysis of thin plates bending", Lat. Am. J. Sol. Struct., 11(4), 556-579. https://doi.org/10.1590/S1679-78252014000400001
  58. Rezaiee-Pajand, M. and Yaghoobi, M. (2014), "An efficient formulation for linear and geometric non-linear membrane elements", Lat. Am. J. Sol. Struct., 11(6), 1012-1035. https://doi.org/10.1590/S1679-78252014000600007
  59. Sabir, A.B. (1985), "A rectangular and triangular plane elasticity element with drilling degrees of freedom", Proceedings of the 2nd International Conference on Variational Methods in Engineering.
  60. Sanders, J.L. (1959), An Improved First Approximation Theory for Thin Shells (NASA TR-R24), US Government Printing Office, Washington, U.S.A.
  61. Sanders, Jr, J.L. (1959), An Improved First-Approximation Theory for Thin Shells.
  62. Scordelis, A.C. and Lo, K.S. (1964), "Computer analysis of cylindrical shells", J. Proc., 61(5), 539-562.
  63. Serpik, I.N. (2010), "Development of a new finite element for plate and shell analysis by application of generalized approach to patch test", Fin. Elem. Analy. Des., 46(11), 1017-1030. https://doi.org/10.1016/j.finel.2010.07.017
  64. Shin, C.M. and Lee, B.C. (2014), "Development of a strainsmoothed three-node triangular flat shell element with drilling degrees of freedom", Fin. Elem. Analy. Des., 86, 71-80. https://doi.org/10.1016/j.finel.2014.04.002
  65. Tahiani, C. and Lachance, L. (1975), "Linear and non-linear analysis of thin shallow shells by mixed finite elements", Comput. Struct., 5(2-3), 167-177. https://doi.org/10.1016/0045-7949(75)90007-3
  66. Teodorescu, P. (1982), "Grands elements finis GEF pour l'elasticite plane'', These no 462 de doctorat presentee au departement de genie civil, Ecole polytechnique federale de Lausanne Suisse.
  67. Thomas, G.R. and Gallagher, R.H. (1975), A Triangular Thin Shell Finite Element: Linear Analysis.
  68. Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill.
  69. Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C. and Taylor, R.L. (1977), The Finite Element Method, McGraw-Hill, London, U.K.
  70. Zweiling, K. (1952), Grundlagen Einer Theorie der Biharmonischen Polynome, Verlag Technik.

피인용 문헌

  1. Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate vol.73, pp.6, 2018, https://doi.org/10.12989/sem.2020.73.6.631
  2. Using Higher-Order Strain Interpolation Function to Improve the Accuracy of Structural Responses vol.12, pp.3, 2018, https://doi.org/10.1142/s175882512050026x