DOI QR코드

DOI QR Code

Investigation of the Effects of CNT Dosages on the Hydration and Heating Properties of Cement Composites with Low Water-to-binder Ratio

낮은 물-바인더 비를 갖는 시멘트 복합체의 CNT 첨가량에 따른 수화특성 및 발열특성

  • 오성우 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 정상화 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 정원석 (경희대학교 토목공학과) ;
  • 최영철 (가천대학교 토목환경공학과)
  • Received : 2018.10.10
  • Accepted : 2018.10.25
  • Published : 2018.11.01

Abstract

Recently, various researches on the utilization of carbon nanotube(CNT) with superior electrical conductivity and large surface areas into concrete have been actively conducted. Thus, mechanical and thermal properties of cement-flyash composites were evaluated concerning the CNT replacements. Based on the low binder-to-water ratio, the cement composites were produced with 0.2 % and 0.5 % of CNT solids. The compressive strengths with various ages, isothermal calorimetry measurement, SEM analysis, thermal conductivity of cement composites and thermal gravimetry analysis were implemented. As the amount of CNT addition was increased, the thermal conductivity of cement composites were also increased. Also, there was no significant mechanical property differences between mixtures with and without CNTs.

최근 우수한 전기전도도와 넓은 비표면적을 갖는 탄소나노튜브(CNT)를 활용하여 고강도 및 고내구성 콘크리트의 생산을 위한 연구가 많은 연구자들에 의하여 활발히 이루어지고 있다. CNT의 혼입을 통한 콘크리트의 고강도에 대한 연구가 주를 이루고 있으나, 그 외의 연구는 미흡한 실정이다. 이에, 본 연구에서는 CNT 첨가량에 대한 시멘트 복합체의 역학성능 및 발열성능에 대한 평가를 실시하였다. 낮은 물-바인더 비를 기반으로 하는 시멘트-플라이애시 배합에 대하여, 바인더 중량대비 0.2% 및 0.5%의 CNT 첨가에 따른 재령별 압축강도, 수화특성분석을 위한 미소수화열 분석, 페이스트 내 CNT의 분산 및 주변 수화물과의 관계를 규명하기 위한 SEM분석, 기준전극 삽입을 통한 발열실험 및 열 중량 분석을 실시하였다. CNT 첨가량의 증가에 따라 발열성능은 증가하며, CNT가 첨가되지 않은 기준 배합 CNT가 첨가된 배합의 경우 동등수준의 역학성능을 갖는 것으로 나타났다.

Keywords

References

  1. Konsta-Gdoutos, M.S., Metaxa, Z.S., and Shah, S.P. (2010), MultiScale Mechanical and Fracture Characteristics and Early-age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites, Cement and Concrete Composites, 32(2), 110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  2. Colins, F., John, L., and Duan, W. (2012), The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-opc paste mixtures, Cement & Concrete Composites, 34(2), 201-207. https://doi.org/10.1016/j.cemconcomp.2011.09.013
  3. Jo, B. W., Kim, S. K., Choi, J. S., Kim, D., Kim, T. Y. (2013), Basic Study by Multi-Walled Carbon NanoTube(MWCNT) for Radiation shielding Concrete, Korea Society of Civil Enginerrs, 10, 16-18.
  4. Kang, S. T., and Park, S. H. (2014), Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites, Journal of the Korea Concrete Institute, 26(1), 63-70. https://doi.org/10.4334/JKCI.2014.26.1.063
  5. Xun, Y., and Eil, K. (2009), Carbon nanotube/cement Composite with piezoresistive properties. Smart Mater Structures, 18(5), 1-5.
  6. Musso, S., Tulliani, J.M., and Ferro, G. (2009), Influence of carbon nanotubes structure on the mechanical behavior of cement composites, 69(11-12), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002
  7. Ha, S. J., and Kang, S. T. (2016), Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs, Journal of the Korea Concrete Institute, 28(1), 67-74. https://doi.org/10.4334/JKCI.2016.28.1.067
  8. Chaipanich, A., Nochaiya, T., Wongkeo, W., and Torkittikul, P. (2010), Compressive strength and microstructure of carbon nanotubes-fly ash cement composites, Materials Science and Engineering A, 527, 1063-1067. https://doi.org/10.1016/j.msea.2009.09.039
  9. Xu, S., Liu, J., and Li, Q. (2015), Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, 76, 16-23.4. https://doi.org/10.1016/j.conbuildmat.2014.11.049
  10. Lee, H., Kang, D., Song, Y., and Chung W. (2017), Heating experiment of CNT cementitous composites with single-walled and multiwalled carbon nanotubes, Journal of Nanomaterials, 2017, 3691509,
  11. Oh, S., Oh, K., Jung, S., Chung, W., and Yoo, S. (2017), Effects of CNT additions on mechanical properties and microstructures of cement, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(6), 162-168. https://doi.org/10.11112/jksmi.2017.21.6.162
  12. Oh, S., and Choi, Y.C. (2018), Superabsorbent polymers as internal curing agents in alkali activated slag mortars, Construction and Building Materials, 159, 1-8. https://doi.org/10.1016/j.conbuildmat.2017.10.121
  13. Jang, S., Hochstein, D., Kawashima, S., and Yin, H. (2017), Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture, Cement and Concrete Composites, 77, 49-59. https://doi.org/10.1016/j.cemconcomp.2016.12.003
  14. Kim, G., Naeem, F., Kim, H., and Lee, H. (2016), Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites, Composite Structures, 136, 162-170. https://doi.org/10.1016/j.compstruct.2015.10.010
  15. Kim, G.M., Park, S.M., Ryu. G.U., and Lee, H. K. (2017), Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber, Cement and Concrete Composites, 82, 165-175 https://doi.org/10.1016/j.cemconcomp.2017.06.004
  16. Jang, S., Hochstein, D. P., Kawashima, S., and Yin, H. (2017), Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture, Cement and Concrete Composites, 77, 49-59 https://doi.org/10.1016/j.cemconcomp.2016.12.003