DOI QR코드

DOI QR Code

Efficiency Analysis of Hand Cycle Utilizing Vital Sign

생체 신호를 이용한 핸드사이클의 효율성 분석

  • 이재훈 (성결대학교 파이데이아학부)
  • Received : 2018.06.24
  • Accepted : 2018.07.25
  • Published : 2018.07.31

Abstract

Propose of this study was to compared and analyzes the cranking between the newly developed hand cycle prototype and the hign-end hand cycle that are sold on the market for the disabled athletes. For this study, 10 male subjects, who had the same type of disability, were selected from the Korea Disabled Cycle Federation. 12 infrared camera(Oqus-500) was utilized to acquire the subjects' kinematic data. we have analyzed the data of 30 seconds - 15 seconds before and after cranking. SPSS 16 was used for a statistical verification and the difference of the sports biomechanical variable between RX and the prototype was verified by utilizing pared samples t-test. The significance level at the time of the experiment was ${\alpha}=.05$. The results show that there is a need to design the hand cycle crank in a curve shape to lessen the muscle fatigue that is measured the highest between the angle of 180 to 195. In addition, comparative analysis between the existing data and the data of modified crank must be researched since the hand cycle cranking is one of the main variables in performance enhancement.

이 연구의 목적은 실제 장애인 선수들을 대상으로 시중에 판매되고 있는 High-end급 핸드 사이클과 새로 개발한 핸드사이클의 크랭킹을 비교 분석 하고자 한다. 현재 대한장애인사이클 연맹에 선수로 등록되어 있는 선수중 동일한 지체유형을 가지고 있는 남자선수 10명을 대상으로 하였다. 대상자들의 운동학적 데이터 획득을 위해 12대의 적외선카메라(Oqus-500)를 사용하였다. 자료 획득을 위해 30초 자료 중 15초 전 후의 크랭킹 3회를 분석하였다. 통계적 검정은 SPSS 16을 이용하여 대응표본 t-test를 이용하여 RX와 시제품의 운동역학적 변인의 차이를 검정하였으며, 이때의 유의 수준은 ${\alpha}=.05$로 하였다. 크랭킹 시 근발현이 가장 높게 나타나는 180~195도 구간에 대한 선수들의 근 피로도 감소를 위해 핸드사이클 크랭크를 곡선으로 제작하여 적용할 필요가 있으며, 향후 연구에서는 핸드사이클의 크랭킹이 경기력 향상의 주요변인인 만큼 구조를 변형시킨 크랭크와 기존데이터를 비교 분석할 필요가 있다.

Keywords

Acknowledgement

Supported by : 국민체육진흥공단

References

  1. T. Abel, T., M. Kroner, S. Rojas Vega, C. Peters, C. Klose, and P. Platen, “Energy expenditure in wheelchair racing and handbiking - a basis for prevention of cardiovascular diseases in those with disabilities,” European Journal of Cardiovascular Prevention and Rehabilitation, Vol. 10, No. 5, pp. 371-376, 2003a. https://doi.org/10.1097/01.hjr.0000096542.30533.59
  2. T. Abel, S. Schneider, P. Platen, and H. K. Struder, “Performance diagnostics in handbiking during competition,” Spinal Cord, Vol. 44, No. 4, pp. 211-216, 2006. https://doi.org/10.1038/sj.sc.3101845
  3. U. Arnet, T. Hinrichs, V. Lay, S. Bertschy, H. Frei, and M. W. G. Brinkhof, “Determinants of handbike use in persons with spinal cord injury: results of a community survey in Switzerland,” Disability and Rehabilitation, Vol. 38, No. 1, pp. 81-86, 2016. https://doi.org/10.3109/09638288.2015.1024339
  4. A. Faupin, P. Gorce, E. Watelain, C. Meyer, and A. Thevenon, “A biomechanical analysis of handcycling: A case study,” Journal of Applied Biomechanics, Vol. 26, No. 2, pp. 240-245, 2010. https://doi.org/10.1123/jab.26.2.240
  5. V. L. Goosey-Tolfrey, H. Alfano, and N. Fowler, "The influence of crank length and cadence on mechanical efficiency in hand cycling," European journal of Applied Physiology, Vol. 102, No. 2, pp. 189-194, 2008 https://doi.org/10.1007/s00421-007-0576-7
  6. C. Kramer, L. Hilker, and H. Bohm, “Influence of crank length and crank width on maximal hand cycling power and cadence,” European Journal of Applied Physiology, Vol. 106, No. 5, pp. 749-757, 2009a. https://doi.org/10.1007/s00421-009-1062-1
  7. C. Kramer, G. Schneider, H. Bohm, I. Klopfer-Kramer, and V. Senner, “Effect of different handgrip angles on work distribution during hand cycling at submaximal power levels,” Ergonomics, Vol. 52, No. 10, pp. 1276-1286, 2009b. https://doi.org/10.1080/00140130902971916
  8. A. Faupin, P. Gorce, and C. Meyer, “Effects of type and mode of propulsion on hand-cycling biomechanics in nondisabled subjects,” Journal of Rehabilitation Research & Development, Vol. 48, No. 9, pp. 1049-1060, 2011. https://doi.org/10.1682/JRRD.2010.19.0199
  9. G. A. Mirka, “The quantification of EMG normalization error,” Ergonomics, Vol. 34, No. 3, pp. 343-352, 1991. https://doi.org/10.1080/00140139108967318
  10. D. G. E. Robertson, G. E. Caldwell, J. Hamill, G. Kamen, and S. N. Whittlesey, Research Methods in Biomechanics. Champaign, Human kinetics, 2004.
  11. H. E. Veeger, L. H. van der Woude, and R. H. Rozendal, “A computerized wheelchair ergometer. Results of a comparison study,” Scandinavian Journal of Rehabilitation Medicine, Vol. 24, No. 1, pp. 17-23, 1992.
  12. H. W. Wu, L. J. Berglund, F. C. Su, B. Yu, A. Westreich, K. J. Kim, and K. N. An, “An instrumented wheel for kinetic analysis of wheelchair propulsion,” Journal of Biomechanical Engineering, Vol. 120, No. 4, pp. 533-535, 1998. https://doi.org/10.1115/1.2798024
  13. G. E. Caldwell, L. Li, S. D. McCole, and J. M. Hagberg, “Pedal and crank kinetics in uphill cycling,” Journal of Applied Biomechanics, Vol. 14, No. 3, pp. 245-259, 1998. https://doi.org/10.1123/jab.14.3.245
  14. J. Verellen, D. Theisen, and Y. Vanlandewijck, “Influence of crank rate in hand cycling,” Medicine and science in sports and exercise, Vol. 36, No. 10, pp. 1826-1831, 2004. https://doi.org/10.1249/01.MSS.0000142367.04918.5A
  15. H. A. Bafghi, A. de Haan, A. Horstman, and L. van der Woude, “Biophysical aspects of submaximal hand cycling,” International Journal of Sports Medicine, Vol. 29, No. 8, pp. 630-638, 2008. https://doi.org/10.1055/s-2007-989416
  16. A. Mader, “Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell,” European Journal of Applied Physiology, Vol. 88, No. 4-5, pp. 317-338, 2003. https://doi.org/10.1007/s00421-002-0676-3