DOI QR코드

DOI QR Code

Bioactive Compounds for the Treatment of Renal Disease

  • Cho, Kang Su (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine) ;
  • Ko, In Kap (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine) ;
  • Yoo, James J. (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine)
  • Received : 2018.07.05
  • Published : 2018.11.01

Abstract

Kidney diseases including acute kidney injury and chronic kidney disease are among the largest health issues worldwide. Dialysis and kidney transplantation can replace a significant portion of renal function, however these treatments still have limitations. To overcome these shortcomings, a variety of innovative efforts have been introduced, including cell-based therapies. During the past decades, advances have been made in the stem cell and developmental biology, and tissue engineering. As part of such efforts, studies on renal cell therapy and artificial kidney developments have been conducted, and multiple therapeutic interventions have shown promise in the pre-clinical and clinical settings. More recently, therapeutic cell-secreting secretomes have emerged as a potential alternative to cell-based approaches. This approach involves the use of renotropic factors, such as growth factors and cytokines, that are produced by cells and these factors have shown effectiveness in facilitating kidney function recovery. This review focuses on the renotropic functions of bioactive compounds that provide protective and regenerative effects for kidney tissue repair, based on the available data in the literature.

Keywords

References

  1. Maeshima A, Nakasatomi M, Nojima Y. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed Res Int 2014;2014:595493.
  2. Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015;82-83:1-11. https://doi.org/10.1016/j.addr.2014.10.007
  3. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med 2011;9:29. https://doi.org/10.1186/1479-5876-9-29
  4. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int 2014;2014:965849.
  5. Little MH, Kairath P. Does renal repair recapitulate kidney development? J Am Soc Nephrol 2017;28:34-46. https://doi.org/10.1681/ASN.2016070748
  6. Corridon PR, Ko IK, Yoo JJ, Atala A. Bioartificial kidneys. Curr Stem Cell Rep 2017;3:68-76. https://doi.org/10.1007/s40778-017-0079-3
  7. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 2001;59:2023-38. https://doi.org/10.1046/j.1523-1755.2001.00717.x
  8. Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol 2004;287:F7-16. https://doi.org/10.1152/ajprenal.00451.2003
  9. Li Y, Joseph A, Bhargava MM, Rosen EM, Nakamura T, Goldberg I. Effect of scatter factor and hepatocyte growth factor on motility and morphology of MDCK cells. In Vitro Cell Dev Biol 1992;28A:364-8.
  10. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991;67:901-8. https://doi.org/10.1016/0092-8674(91)90363-4
  11. Santos OF, Moura LA, Rosen EM, Nigam SK. Modulation of HGFinduced tubulogenesis and branching by multiple phosphorylation mechanisms. Dev Biol 1993;159:535-48. https://doi.org/10.1006/dbio.1993.1262
  12. Santos OF, Nigam SK. HGF-induced tubulogenesis and branching of epithelial cells is modulated by extracellular matrix and TGF-beta. Dev Biol 1993;160:293-302. https://doi.org/10.1006/dbio.1993.1308
  13. Ishibashi K, Sasaki S, Sakamoto H, Hoshino Y, Nakamura T, Marumo F. Expressions of receptor gene for hepatocyte growth factor in kidney after unilateral nephrectomy and renal injury. Biochem Biophys Res Commun 1992;187:1454-9. https://doi.org/10.1016/0006-291X(92)90465-W
  14. Liu Y, Sun AM, Dworkin LD. Hepatocyte growth factor protects renal epithelial cells from apoptotic cell death. Biochem Biophys Res Commun 1998;246:821-6. https://doi.org/10.1006/bbrc.1998.8676
  15. Yo Y, Morishita R, Nakamura S, Tomita N, Yamamoto K, Moriguchi A, et al. Potential role of hepatocyte growth factor in the maintenance of renal structure: anti-apoptotic action of HGF on epithelial cells. Kidney Int 1998;54:1128-38. https://doi.org/10.1046/j.1523-1755.1998.00092.x
  16. Kawaida K, Matsumoto K, Shimazu H, Nakamura T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc Natl Acad Sci U S A 1994;91:4357-61. https://doi.org/10.1073/pnas.91.10.4357
  17. Rotwein P. Structure, evolution, expression and regulation of insulin- like growth factors I and II. Growth Factors 1991;5:3-18. https://doi.org/10.3109/08977199109000267
  18. Hammerman MR, Miller SB. Therapeutic use of growth factors in renal failure. J Am Soc Nephrol 1994;5:1-11.
  19. Abolbashari M, Agcaoili SM, Lee MK, Ko IK, Aboushwareb T, Jackson JD, et al. Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater 2016;29:52-61. https://doi.org/10.1016/j.actbio.2015.11.026
  20. Feld S, Hirschberg R. Growth hormone, the insulin-like growth factor system, and the kidney. Endocr Rev 1996;17:423-80.
  21. Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2015;65:327-36. https://doi.org/10.1053/j.ajkd.2014.05.024
  22. Ding H, Kopple JD, Cohen A, Hirschberg R. Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest 1993;91:2281-7. https://doi.org/10.1172/JCI116456
  23. Miller SB, Martin DR, Kissane J, Hammerman MR. Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci U S A 1992;89:11876-80. https://doi.org/10.1073/pnas.89.24.11876
  24. Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L, et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 2007;18:2921-8. https://doi.org/10.1681/ASN.2006121318
  25. Xinaris C, Morigi M, Benedetti V, Imberti B, Fabricio AS, Squarcina E, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 2013;22:423-36. https://doi.org/10.3727/096368912X653246
  26. Fisher DA, Salido EC, Barajas L. Epidermal growth factor and the kidney. Annu Rev Physiol 1989;51:67-80. https://doi.org/10.1146/annurev.ph.51.030189.000435
  27. Rogers SA, Ryan G, Hammerman MR. Metanephric transforming growth factor-alpha is required for renal organogenesis in vitro. Am J Physiol 1992;262(4 Pt 2):F533-9. https://doi.org/10.1152/ajpcell.1992.262.2.C533
  28. Rall LB, Scott J, Bell GI, Crawford RJ, Penschow JD, Niall HD, et al. Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues. Nature 1985;313:228-31. https://doi.org/10.1038/313228a0
  29. Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 1989;84:1757-61. https://doi.org/10.1172/JCI114359
  30. Morin NJ, Laurent G, Nonclercq D, Toubeau G, Heuson-Stiennon JA, Bergeron MG, et al. Epidermal growth factor accelerates renal tissue repair in a model of gentamicin nephrotoxicity in rats. Am J Physiol 1992;263(5 Pt 2):F806-11.
  31. Coimbra TM, Cieslinski DA, Humes HD. Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. Am J Physiol 1990;259(3 Pt 2):F438-43.
  32. Sakai M, Zhang M, Homma T, Garrick B, Abraham JA, McKanna JA, et al. Production of heparin binding epidermal growth factorlike growth factor in the early phase of regeneration after acute renal injury. Isolation and localization of bioactive molecules. J Clin Invest 1997;99:2128-38. https://doi.org/10.1172/JCI119386
  33. Homma T, Sakai M, Cheng HF, Yasuda T, Coffey RJ Jr, Harris RC. Induction of heparin-binding epidermal growth factor-like growth factor mRNA in rat kidney after acute injury. J Clin Invest 1995;96:1018-25. https://doi.org/10.1172/JCI118087
  34. Zhuang S, Kinsey GR, Rasbach K, Schnellmann RG. Heparin-binding epidermal growth factor and Src family kinases in proliferation of renal epithelial cells. Am J Physiol Renal Physiol 2008;294:F459-68. https://doi.org/10.1152/ajprenal.00473.2007
  35. El Sabbahy M, Vaidya VS. Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip Rev Syst Biol Med 2011;3:606-18. https://doi.org/10.1002/wsbm.133
  36. Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 2008;294:F928-36. https://doi.org/10.1152/ajprenal.00596.2007
  37. Leonard EC, Friedrich JL, Basile DP. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am J Physiol Renal Physiol 2008;295:F1648-57. https://doi.org/10.1152/ajprenal.00099.2008
  38. Chade AR, Kelsen S. Renal microvascular disease determines the responses to revascularization in experimental renovascular disease. Circ Cardiovasc Interv 2010;3:376-83. https://doi.org/10.1161/CIRCINTERVENTIONS.110.951277
  39. Iliescu R, Fernandez SR, Kelsen S, Maric C, Chade AR. Role of renal microcirculation in experimental renovascular disease. Nephrol Dial Transplant 2010;25:1079-87. https://doi.org/10.1093/ndt/gfp605
  40. Mori da Cunha MG, Zia S, Beckmann DV, Carlon MS, Arcolino FO, Albersen M, et al. Vascular endothelial growth factor up-regulation in human amniotic fluid stem cell enhances nephroprotection after ischemia-reperfusion injury in the rat. Crit Care Med 2017;45:e86-96. https://doi.org/10.1097/CCM.0000000000002020
  41. Massague J. $TGF{\beta}$ signalling in context. Nat Rev Mol Cell Biol 2012;13:616-30. https://doi.org/10.1038/nrm3434
  42. Border WA, Noble NA, Yamamoto T, Tomooka S, Kagami S. Antagonists of transforming growth factor-beta: a novel approach to treatment of glomerulonephritis and prevention of glomerulosclerosis. Kidney Int 1992;41:566-70. https://doi.org/10.1038/ki.1992.83
  43. O'Shea M, Miller SB, Finkel K, Hammerman MR. Roles of growth hormone and growth factors in the pathogenesis and treatment of kidney disease. Curr Opin Nephrol Hypertens 1993;2:67-72. https://doi.org/10.1097/00041552-199301000-00010
  44. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 1990;346:371-4. https://doi.org/10.1038/346371a0
  45. Okuda S, Nakamura T, Yamamoto T, Ruoslahti E, Border WA. Dietary protein restriction rapidly reduces transforming growth factor beta 1 expression in experimental glomerulonephritis. Proc Natl Acad Sci U S A 1991;88:9765-9. https://doi.org/10.1073/pnas.88.21.9765
  46. Furuichi K, Kaneko S, Wada T. Chemokine/chemokine receptormediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin Exp Nephrol 2009;13:9-14. https://doi.org/10.1007/s10157-008-0119-5
  47. Floege J, Johnson RJ. Multiple roles for platelet-derived growth factor in renal disease. Miner Electrolyte Metab 1995;21:271-82.
  48. Bessho K, Mizuno S, Matsumoto K, Nakamura T. Counteractive effects of HGF on PDGF-induced mesangial cell proliferation in a rat model of glomerulonephritis. Am J Physiol Renal Physiol 2003;284:F1171-80. https://doi.org/10.1152/ajprenal.00326.2002
  49. Alpers CE, Seifert RA, Hudkins KL, Johnson RJ, Bowen-Pope DF. Developmental patterns of PDGF B-chain, PDGF-receptor, and alpha-actin expression in human glomerulogenesis. Kidney Int 1992;42:390-9. https://doi.org/10.1038/ki.1992.300
  50. Nakagawa T, Sasahara M, Haneda M, Kataoka H, Nakagawa H, Yagi M, et al. Role of PDGF B-chain and PDGF receptors in rat tubular regeneration after acute injury. Am J Pathol 1999;155:1689-99. https://doi.org/10.1016/S0002-9440(10)65484-3
  51. Nguyen TQ, Goldschmeding R. Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm Res 2008;25:2416-26. https://doi.org/10.1007/s11095-008-9548-9
  52. Simon M, Maresh JG, Harris SE, Hernandez JD, Arar M, Olson MS, et al. Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am J Physiol 1999;276(3 Pt 2):F382-9.
  53. Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, et al. Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 2000;279:F130-43. https://doi.org/10.1152/ajprenal.2000.279.1.F130
  54. Almanzar MM, Frazier KS, Dube PH, Piqueras AI, Jones WK, Charette MF, et al. Osteogenic protein-1 mRNA expression is selectively modulated after acute ischemic renal injury. J Am Soc Nephrol 1998;9:1456-63.
  55. De Petris L, Hruska KA, Chiechio S, Liapis H. Bone morphogenetic protein-7 delays podocyte injury due to high glucose. Nephrol Dial Transplant 2007;22:3442-50. https://doi.org/10.1093/ndt/gfm503
  56. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003;9:964-8. https://doi.org/10.1038/nm888
  57. Gould SE, Day M, Jones SS, Dorai H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 2002;61:51-60. https://doi.org/10.1046/j.1523-1755.2002.00103.x
  58. Wang S, Hirschberg R. BMP7 antagonizes TGF-beta-dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 2003;284:F1006-13. https://doi.org/10.1152/ajprenal.00382.2002
  59. Mitu GM, Wang S, Hirschberg R. BMP7 is a podocyte survival factor and rescues podocytes from diabetic injury. Am J Physiol Renal Physiol 2007;293:F1641-8. https://doi.org/10.1152/ajprenal.00179.2007
  60. Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, et al. Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 1998;102:202-14. https://doi.org/10.1172/JCI2237
  61. Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 2002;13 Suppl 1:S14-21.
  62. Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, et al. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 2003;63:2037-49. https://doi.org/10.1046/j.1523-1755.2003.00035.x
  63. Nishida M, Hamaoka K. How does G-CSF act on the kidney during acute tubular injury? Nephron Exp Nephrol 2006;104:e123-8. https://doi.org/10.1159/000094962
  64. Zhang Y, Woodward VK, Shelton JM, Richardson JA, Zhou XJ, Link D, et al. Ischemia-reperfusion induces G-CSF gene expression by renal medullary thick ascending limb cells in vivo and in vitro. Am J Physiol Renal Physiol 2004;286:F1193-201. https://doi.org/10.1152/ajprenal.00379.2002
  65. Nishida M, Fujimoto S, Toiyama K, Sato H, Hamaoka K. Effect of hematopoietic cytokines on renal function in cisplatin-induced ARF in mice. Biochem Biophys Res Commun 2004;324:341-7. https://doi.org/10.1016/j.bbrc.2004.09.051
  66. Stokman G, Leemans JC, Claessen N, Weening JJ, Florquin S. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol 2005;16:1684-92. https://doi.org/10.1681/ASN.2004080678
  67. Togel F, Isaac J, Westenfelder C. Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure. J Am Soc Nephrol 2004;15:1261-7. https://doi.org/10.1097/01.ASN.0000123692.01237.0A
  68. Togel FE, Westenfelder C. Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney Int Suppl 2011;1:87-9. https://doi.org/10.1038/kisup.2011.20
  69. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004;10:858-64. https://doi.org/10.1038/nm1075
  70. Grone HJ, Cohen CD, Grone E, Schmidt C, Kretzler M, Schlondorff D, et al. Spatial and temporally restricted expression of chemokines and chemokine receptors in the developing human kidney. J Am Soc Nephrol 2002;13:957-67.
  71. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 2005;67:1772-84. https://doi.org/10.1111/j.1523-1755.2005.00275.x
  72. Stokman G, Stroo I, Claessen N, Teske GJ, Florquin S, Leemans JC. SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury. Nephrol Dial Transplant 2010;25:3852-9. https://doi.org/10.1093/ndt/gfq311
  73. Ohnishi H, Mizuno S, Mizuno-Horikawa Y, Kato T. Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury. J Vet Med Sci 2015;77:313-9. https://doi.org/10.1292/jvms.14-0562
  74. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol 2015;33:747-85. https://doi.org/10.1146/annurev-immunol-032414-112123
  75. Weidenbusch M, Rodler S, Anders HJ. Interleukin-22 in kidney injury and regeneration. Am J Physiol Renal Physiol 2015;308:F1041-6. https://doi.org/10.1152/ajprenal.00005.2015
  76. Kulkarni OP, Hartter I, Mulay SR, Hagemann J, Darisipudi MN, Kumar Vr S, et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol 2014;25:978-89. https://doi.org/10.1681/ASN.2013050528
  77. Xu MJ, Feng D, Wang H, Guan Y, Yan X, Gao B. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J Am Soc Nephrol 2014;25:967-77. https://doi.org/10.1681/ASN.2013060611
  78. Zhang SL, Guo J, Moini B, Ingelfinger JR. Angiotensin II stimulates Pax-2 in rat kidney proximal tubular cells: impact on proliferation and apoptosis. Kidney Int 2004;66:2181-92. https://doi.org/10.1111/j.1523-1755.2004.66008.x
  79. Weber KT. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin Nephrol 1997;17:467-91.
  80. Gagliardini E, Benigni A. Drugs to foster kidney regeneration in experimental animals and humans. Nephron Exp Nephrol 2014;126:91. https://doi.org/10.1159/000360675
  81. Benigni A, Morigi M, Remuzzi G. Kidney regeneration. Lancet 2010;375:1310-7. https://doi.org/10.1016/S0140-6736(10)60237-1
  82. Arcasoy MO. The non-haematopoietic biological effects of erythropoietin. Br J Haematol 2008;141:14-31. https://doi.org/10.1111/j.1365-2141.2008.07014.x
  83. Sharples EJ, Patel N, Brown P, Stewart K, Mota-Philipe H, Sheaff M, et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 2004;15:2115-24. https://doi.org/10.1097/01.ASN.0000135059.67385.5D
  84. Spandou E, Tsouchnikas I, Karkavelas G, Dounousi E, Simeonidou C, Guiba-Tziampiri O, et al. Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model. Nephrol Dial Transplant 2006;21:330-6. https://doi.org/10.1093/ndt/gfi177
  85. Yang CW, Li C, Jung JY, Shin SJ, Choi BS, Lim SW, et al. Preconditioning with erythropoietin protects against subsequent ischemiareperfusion injury in rat kidney. FASEB J 2003;17:1754-5. https://doi.org/10.1096/fj.02-1191fje
  86. Bagnis C, Beaufils H, Jacquiaud C, Adabra Y, Jouanneau C, Le Nahour G, et al. Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 2001;16:932-8. https://doi.org/10.1093/ndt/16.5.932
  87. Lee SH, Li C, Lim SW, Ahn KO, Choi BS, Kim YS, et al. Attenuation of interstitial inflammation and fibrosis by recombinant human erythropoietin in chronic cyclosporine nephropathy. Am J Nephrol 2005;25:64-76. https://doi.org/10.1159/000084275
  88. Dardashti A, Ederoth P, Algotsson L, Bronden B, Grins E, Larsson M, et al. Erythropoietin and protection of renal function in cardiac surgery (the EPRICS Trial). Anesthesiology 2014;121:582-90. https://doi.org/10.1097/ALN.0000000000000321
  89. Song YR, Lee T, You SJ, Chin HJ, Chae DW, Lim C, et al. Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol 2009;30:253-60. https://doi.org/10.1159/000223229
  90. Zhu F, Chong Lee Shin OL, Xu H, Zhao Z, Pei G, Hu Z, et al. Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells. Am J Transl Res 2017;9:1694-707.
  91. Chang YC, Hsu SY, Yang CC, Sung PH, Chen YL, Huang TH, et al. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood) 2016;241:1588-602. https://doi.org/10.1177/1535370216642528
  92. Yildirim ME, Badem H, Cakmak M, Yilmaz H, Kosem B, Karatas OF, et al. Melatonin protects kidney against apoptosis induced by acute unilateral ureteral obstruction in rats. Cent European J Urol 2016;69:225-30.
  93. Maeshima A, Nojima Y, Kojima I. The role of the activin-follistatin system in the developmental and regeneration processes of the kidney. Cytokine Growth Factor Rev 2001;12:289-98. https://doi.org/10.1016/S1359-6101(01)00010-7
  94. Fang DY, Lu B, Hayward S, de Kretser DM, Cowan PJ, Dwyer KM. The role of activin A and B and the benefit of follistatin treatment in renal ischemia-reperfusion injury in mice. Transplant Direct 2016; 2:e87. https://doi.org/10.1097/TXD.0000000000000601
  95. Maeshima A, Zhang YQ, Nojima Y, Naruse T, Kojima I. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol 2001;12:1685-95.
  96. Maeshima A, Mishima K, Yamashita S, Nakasatomi M, Miya M, Sakurai N, et al. Follistatin, an activin antagonist, ameliorates renal interstitial fibrosis in a rat model of unilateral ureteral obstruction. Biomed Res Int 2014;2014:376191.
  97. Saccon F, Gatto M, Ghirardello A, Iaccarino L, Punzi L, Doria A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun Rev 2017;16:34-47. https://doi.org/10.1016/j.autrev.2016.09.023
  98. Chen SC, Kuo PL. The role of galectin-3 in the kidneys. Int J Mol Sci 2016;17:565. https://doi.org/10.3390/ijms17040565
  99. Nishiyama J, Kobayashi S, Ishida A, Nakabayashi I, Tajima O, Miura S, et al. Up-regulation of galectin-3 in acute renal failure of the rat. Am J Pathol 2000;157:815-23. https://doi.org/10.1016/S0002-9440(10)64595-6
  100. Desmedt V, Desmedt S, Delanghe JR, Speeckaert R, Speeckaert MM. Galectin-3 in renal pathology: more than just an innocent bystander. Am J Nephrol 2016;43:305-17. https://doi.org/10.1159/000446376
  101. Liu P, Feng Y, Wang Y, Zhou Y, Zhao L. Protective effect of vitamin E against acute kidney injury. Biomed Mater Eng 2015;26 Suppl 1:S2133-44.
  102. Cho MH, Kim SN, Park HW, Chung S, Kim KS. Could vitamin E prevent contrast-induced acute kidney injury? A systematic review and meta-analysis. J Korean Med Sci 2017;32:1468-73. https://doi.org/10.3346/jkms.2017.32.9.1468
  103. Kim HB, Shanu A, Wood S, Parry SN, Collet M, McMahon A, et al. Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Radic Res 2011;45:1000-12. https://doi.org/10.3109/10715762.2011.590137
  104. Su X, Xie X, Liu L, Lv J, Song F, Perkovic V, et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis. Am J Kidney Dis 2017;69:69-77. https://doi.org/10.1053/j.ajkd.2016.07.033
  105. Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ. Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J 2012;26:158-68. https://doi.org/10.1096/fj.11-182998
  106. Ko IK, Lee SJ, Atala A, Yoo JJ. In situ tissue regeneration through host stem cell recruitment. Exp Mol Med 2013;45:e57. https://doi.org/10.1038/emm.2013.118

Cited by

  1. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease vol.11, pp.3, 2018, https://doi.org/10.3390/nu11030496
  2. Cell-derived Secretome for the Treatment of Renal Disease vol.23, pp.2, 2018, https://doi.org/10.3339/jkspn.2019.23.2.67
  3. The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature vol.25, pp.9, 2020, https://doi.org/10.3390/molecules25092185
  4. Long Non-Coding RNA RMRP Contributes to Sepsis-Induced Acute Kidney Injury vol.62, pp.3, 2018, https://doi.org/10.3349/ymj.2021.62.3.262