DOI QR코드

DOI QR Code

Performance improvements of organic solar cell using dual cathode buffer layers

  • Sachdeva, Sheenam (Center of Advanced Study in Physics, Panjab University) ;
  • Kaur, Jagdish (Center of Advanced Study in Physics, Panjab University) ;
  • Sharma, Kriti (Department of Physics, GGDSD College) ;
  • Tripathi, S.K. (Center of Advanced Study in Physics, Panjab University)
  • Received : 2018.07.18
  • Accepted : 2018.10.15
  • Published : 2018.12.31

Abstract

The present study deals with the effect of dual cathode buffer layer (CBL) on the performance of bilayer of 4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70)-based organic solar cell (OSC) with low donor concentration. OSC devices with CBLs have been fabricated using thermal vapor deposition technique. We report the use of lithium fluoride (LiF) and molybdenum trioxide ($MoO_3$) as CBLs. The insertion of LiF between C70 and aluminium (Al) electrode enhances the power conversion efficiency (PCE) of device from 1.89% to 2.47% but quenching of photogenerated excitons is observed at interface of C70 and LiF layers. Incorporation of $MoO_3$ between LiF and Al electrode further enhances PCE of device to 3.51%. This has also improved the material quality and device properties, by preventing the formation of gap states and diminishing exciton quenching.

Keywords

References

  1. Y. Liu, C.C. Chen, Z. Hong, J. Gao, Y. Yang, H. Zhou, L. Dou, G. Li, Y. Yang, Sci. Rep. 3 (2013) 3356. https://doi.org/10.1038/srep03356
  2. O.A. Abdulrazzaq, V. Saini, S. Bourdo, E. Dervishi, A.S. Biris, Part. Sci. Technol. 31 (2013) 427. https://doi.org/10.1080/02726351.2013.769470
  3. B.R. Patil, Y. Liu, T. Qamar, H.G. Rubahn, M. Madsen, J. Phys. D Appl. Phys. 50 (2017) 385101. https://doi.org/10.1088/1361-6463/aa7f1c
  4. O.V. Kozlova, Y.N. Luponosovb, A.N. Solodukhinb, B. Flamentc, O. Douheretd, P. Vivilled, D. Beljonnec, R. Lazzaronic, J. Cornilc, S.A. Ponomarenkob, M.S. Pshenichnikov, Org. Electron. 53 (2018) 185. https://doi.org/10.1016/j.orgel.2017.11.037
  5. B.R. Patil, M. Ahmadpour, G. Sherafatipour, T. Qamar, A.F. Fernandez, K. Zojer, H.G. Rubahn, M. Madsen, Sci. Rep. 8 (2018) 12608. https://doi.org/10.1038/s41598-018-30826-7
  6. D. Yokoyama, Z.Q. Wang, J.Y. Pu, K. Kobayashi, J. Kido, Z. Hong, Sol. Energy Mater. Sol. Cells 98 (2012) 472. https://doi.org/10.1016/j.solmat.2011.10.014
  7. M. Rani, S.K. Tripathi, Renew. Sustain. Energy Rev. 61 (2016) 97. https://doi.org/10.1016/j.rser.2016.03.012
  8. X. Xiao, J.D. Zimmerman, B.E. Lassiter, K.J. Bergemann, S.R. Forrest, Appl. Phys. Lett. 102 (2013) 073302. https://doi.org/10.1063/1.4793195
  9. Heliatek GmbH 2016 $Heliafilm^{(R)}$ (Available at: www.heliatek.com/en/heliafilm/unique).
  10. H. Fan, X. Zhu, Sci. China. Chem. 58 (2015) 922. https://doi.org/10.1007/s11426-015-5418-6
  11. S. Lattante, Electronics 3 (2014) 132. https://doi.org/10.3390/electronics3010132
  12. A.L. Toumi, A. Khelil, K. Tobel, M. Makha, L.A. Hernandez, Y. Mouchaal, L. Cattin, M.A. del Valle, F.R. Diaz, J.C. Bernede, Solid State Electron. 104 (2015) 1. https://doi.org/10.1016/j.sse.2014.11.006
  13. J. Yu, N. Wang, Y. Zang, Y. Jiang, Sol. Energy Mater. Sol. Cell. 95 (2011) 664. https://doi.org/10.1016/j.solmat.2010.09.037
  14. F.J. Zhang, D.W. Zhao, Z.L. Zhuo, H. Wang, Z. Xu, Y.S. Wang, Sol. Energy Mater. Sol. Cell. 94 (2010) 2416. https://doi.org/10.1016/j.solmat.2010.08.031
  15. M. Zhang, H. Wang, C.W. Tang, Appl. Phys. Lett. 97 (2010) 143503. https://doi.org/10.1063/1.3491214
  16. Z. Su, L. Wang, Y. Li, G. Zhang, H. Zhao, H. Yang, Y. Ma, B. Chu, W. Li, ACS Appl. Mater. Interfaces 5 (2013) 12847. https://doi.org/10.1021/am404441n
  17. Y. Gao, F. Jin, W. Li, Z. Su, B. Chu, J. Wang, H. Zhao, H. Wu, C. Liu, F. Hou, T. Lin, Q. Song, Sci. Rep. 6 (2016) 23916. https://doi.org/10.1038/srep23916
  18. C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, Appl. Phys. Lett. 80 (2002) 1288. https://doi.org/10.1063/1.1446988
  19. A. Singh, A. Dey, D. Das, P.K. Iyer, ACS Appl. Mater. Interfaces 8 (2016) 10904. https://doi.org/10.1021/acsami.6b03102
  20. H. Kageyama, H. Kajii, Y. Ohmori, Y. Shirota, Appl. Phys. Expr. 4 (2011) 032301. https://doi.org/10.1143/APEX.4.032301
  21. J. Mayer, A. Shu, M. Kroger, A. Khan, Appl. Phys. Lett. 96 (2010) 133308. https://doi.org/10.1063/1.3374333
  22. J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 24 (2012) 5408. https://doi.org/10.1002/adma.201201630
  23. J.C. Bernede, L. Cattin, M. Morsli, Technol. Lett. 1 (2014) 5.
  24. T.H. Lai, S.W. Tsang, J.R. Manders, S. Chen, F. So, Mater. Today 16 (2013) 424. https://doi.org/10.1016/j.mattod.2013.10.001
  25. F. Jin, B. Chu, Org. Electron. 14 (2013) 1130. https://doi.org/10.1016/j.orgel.2013.01.026
  26. S. Sachdeva, S. Sharma, D. Singh, S.K. Tripathi, AIP Conf. Proc. 1953 (2018) 030151.
  27. Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ra, L.P. Yu, Adv. Mater. 22 (2010) E135. https://doi.org/10.1002/adma.200903528
  28. Y. Ka, H. Hwang, C. Kim, Sci. Rep. 7 (2017) 1942. https://doi.org/10.1038/s41598-017-02181-6
  29. J.W. Seo, J.H. Kim, M. Kim, S.M. Jin, S.H. Lee, C. Cho, E. Lee, S. Yoo, J.Y. Park, J.Y. Lee, ACS Omega 3 (2018) 929. https://doi.org/10.1021/acsomega.7b01652
  30. E.M.Y. Lee, W.A. Tisdale, J. Phys. Chem. C 119 (2015) 9005. https://doi.org/10.1021/jp512634c
  31. T. Zhuang, T. Sano, J. Kido, Org. Electron. 26 (2015) 415. https://doi.org/10.1016/j.orgel.2015.08.015
  32. Q. Qiao, Y. Xie, J.T. McLeskey, J. Phys. Chem. C 112 (2008) 9912. https://doi.org/10.1021/jp7115615
  33. Y.Q. Zheng, W.J. Potscavage, T. Komino, M. Hirade, J. Adachi, C. Adachi, Appl. Phys. Lett. 102 (2013) 143304. https://doi.org/10.1063/1.4801647
  34. M. Diantoro, T. Suprayogi, A. Hidayat, A. Taufiq, B. Fuad, R. Suryana, Int. J. Photoenergy 2018 (2018) 1.
  35. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Y. Luo, Q. Meng, Appl. Phys. Lett. 104 (2014) 063901. https://doi.org/10.1063/1.4864638
  36. Z. Tang, Q. Liu, Q. Chen, I. Khatri, H. Shira, Phys. Status Solidi A 211 (2014) 1179. https://doi.org/10.1002/pssa.201330446
  37. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, Adv. Mater. 22 (2010) 2743. https://doi.org/10.1002/adma.200904383
  38. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, Nano Lett. 12 (2012) 2745. https://doi.org/10.1021/nl204414u
  39. N. Kalfagiannis, P.G. Karagiannidis, C. Pitsalidis, N.T. Panagiotopoulos, C. Gracalidis, S. Kassavetis, P. Patsalas, S. Logothetidis, Sol. Energy Mater. Sol. Cells 104 (2012) 165. https://doi.org/10.1016/j.solmat.2012.05.018
  40. K. Bouzidia, M. Chegaara, M. Aillerieb, Energy Procedia 18 (2012) 1601. https://doi.org/10.1016/j.egypro.2012.06.001
  41. B. Singh, J. Singh, J. Kaur, R.K. Moudgil, S.K. Tripathi, Physica B 490 (2016) 49. https://doi.org/10.1016/j.physb.2016.03.006
  42. J. Kaur, S.K. Tripathi, Philos. Mag. A 96 (2016) 45. https://doi.org/10.1080/14786435.2015.1122246
  43. K. Sharma, Poonam, G.S.S. Saini, S.K. Tripathi, J. Mater. Sci. Mater. Electron. 29 (2018) 9596. https://doi.org/10.1007/s10854-018-8995-2
  44. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Curr. Appl. Phys. 13 (2013) 964. https://doi.org/10.1016/j.cap.2013.01.037
  45. M.Y.L. Elizabeth, A.T. William, J. Phys. Chem. C 119 (2015) 9005. https://doi.org/10.1021/jp512634c
  46. A. Bruno, L.X. Reynolds, C. Dyer-Smith, J. Nelson, S.A. Haque, J. Phys. Chem. C 117 (2013) 19832. https://doi.org/10.1021/jp404985q
  47. D. Pelczarski, P. Grygiel, W. Stampor, Phys. Status Solidi B 255 (2018) 1800043. https://doi.org/10.1002/pssb.201800043
  48. K.J. Bergemann, S.R. Forrest, Appl. Phys. Lett. 99 (2011) 243303. https://doi.org/10.1063/1.3668106
  49. H. Shekhar, O. Solomeshch, D. Liraz, N. Tessler, Appl. Phys. Lett. 111 (2017) 223301. https://doi.org/10.1063/1.4996826

Cited by

  1. Photovoltaic effect in the single-junction DBP/PTCBI organic system under low intensity of monochromatic light vol.19, pp.11, 2018, https://doi.org/10.1016/j.cap.2019.08.011
  2. Efficiency of exciton splitting in organic photovoltaic cells within EQE spectrum vol.580, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2021.152167