Acknowledgement
Supported by : National Natural Science Foundation of China
References
- AASHTO. (2012). AASHTO LRFD bridge design specifications. Washington, DC: American Association ofState Highway and Transportation Officials.
- Baik, B., Yamada, K., & Ishikawa, T. (2008). Fatigue strength of fillet welded joint subjected to plate bending. International Journal of Steel Structures, 8(3), 163-169.
- Courtin, S., Gardin, C., Bezine, G., & Hamouda, H. B. (2005). Advantages of the J-integral approach for calculating stress intensity factors when using the commercial finite element software ABAQUS. Engineering Fracture Mechanics, 72(14), 2174-2185. https://doi.org/10.1016/j.engfracmech.2005.02.003
- Deshmukh, A. R., Venkatachalam, G., Divekar, H., & Saraf, M. R. (2014). Effect of weld penetration on fatigue life. Procedia Engineering, 97, 783-789. https://doi.org/10.1016/j.proeng.2014.12.277
- Fisher, J. W., & Barsom, J. M. (2016). Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge. Journal of Bridge Engineering, 21(3), 04015065. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000823
- Hobbacher, A. (2016). Recommendations for fatigue design of welded joints and components. Springer International Publishing.
- Ji, B., Liu, R., Chen, C., Maeno, H., & Chen, X. (2013). Evaluation on root-deck fatigue of orthotropic steel bridge deck. Journal of Constructional Steel Research, 90, 174-183. https://doi.org/10.1016/j.jcsr.2013.07.036
- JSSC. (2012). Fatigue design recommendations for steel structures. Tokyo: Japanese Society of Steel Construction.
- JTG-D64. (2015). Specifications for design of highway steel bridge. Chinese National Standard. (in Chinese).
- Kolstein, M. H. (2007). Fatigue classification of welded joints in orthotropic steel bridge decks. TU Delft: Delft University of Technology.
- Miki, C. (2006). Fatigue damage in orthotropic steel bridge decks and retrofit works. International Journal of Steel Structures, 6(4), 255-267.
- Pouget, S., Sauzeat, C., Di Benedetto, H., & Olard, F. (2010). Numerical simulation of the five-point bending test designed to study bituminous wearing courses on orthotropic steel bridge. Materials and Structures, 43(3), 319-330. https://doi.org/10.1617/s11527-009-9491-1
- Sim, H. B., & Uang, C. M. (2012). Stress analyses and parametric study on full-scale fatigue tests of rib-to-deck welded joints in steel orthotropic decks. Journal of Bridge Engineering, 17(5), 765-773. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000307
- Todinov, M. T. (1999). Maximum principal tensile stress and fatigue crack origin for compression springs. International Journal of Mechanical Sciences, 41(3), 357-370. https://doi.org/10.1016/S0020-7403(98)00068-X
- Xiao, Z. G., & Yamada, K. (2004). A method of determining geometric stress for fatigue strength evaluation of steel welded joints. International Journal of Fatigue, 26(12), 1277-1293. https://doi.org/10.1016/j.ijfatigue.2004.05.001
- Xiao, Z. G., Yamada, K., Inoue, J., & Yamaguchi, K. (2006). Fatigue cracks in longitudinal ribs of steel orthotropic deck. International Journal of Fatigue, 28(4), 409-416. https://doi.org/10.1016/j.ijfatigue.2005.07.017
- Xiao, Z. G., Yamada, K., Ya, S., & Zhao, X. L. (2008). Stress analyses and fatigue evaluation of rib-to-deck joints in steel orthotropic decks. International Journal of Fatigue, 30(8), 1387-1397. https://doi.org/10.1016/j.ijfatigue.2007.10.008
- Ya, S., Yamada, K., & Ishikawa, T. (2010). Fatigue evaluation of ribto-deck welded joints of orthotropic steel bridge deck. Journal of Bridge Engineering, 16(4), 492-499.