DOI QR코드

DOI QR Code

The effect of short-term particular matter2.5 exposure on asthma attacks in asthma children in Fukuoka, Japan

  • Lee, Song Han (Department of Pediatrics, Busan St. Mary's Hospital) ;
  • Lee, Koh Woon (Department of Pediatrics, Busan St. Mary's Hospital) ;
  • Hwang, Yoon Ha (Department of Pediatrics, Busan St. Mary's Hospital) ;
  • Odajima, Hiroshi (Department of Pediatrics, Fukuoka National Hospital)
  • Received : 2016.09.21
  • Accepted : 2016.10.24
  • Published : 2018.12.31

Abstract

Objectives: We investigated whether asthma attacks in asthmatic children were caused by short-term exposure to particulate $matter(PM)_{2.5}$. Methods: Subjects were 411 patients who received inhalation therapy in National Fukuoka Hospital, from March to May 2013. All subjects were outpatients. We surveyed the air quality measurement results in the stations closest to the address of the patients. Data were used from the City of Fukuoka website data on air pollution. We carried out a case-crossover study and compared $PM_{2.5}$ concentration between 7 days after asthma attack occurred and the day asthma attack occurred and 1, 2 and 3 days before asthma attack occurred. Results: Highest hourly concentration of the day (OR 1.013, 95%CI 1.000-1.025) showed a significant association with 1 day before $PM_{2.5}$ concentration statistically. And 0-1 year-old infants were more vulnerable to the highest concentration of 1 day before $PM_{2.5}$ concentration(P < 0.05). Average concentration of $NO_2$ and $O_3$ and asthma attack also showed a significant association. Conclusions: Maximal daily $PM_{2.5}$ concentrations within 24 hours prior to the attack affect asthma exacerbation. 0-1 year-old infants are particularly vulnerable to $PM_{2.5}$ concentration. Asthma exacerbation is aggravated by $NO_2$ and $O_3$ concentration on the day of the asthma attack.

Keywords

References

  1. United States Environmental Protection Agency (2012). viewed April 17 2013, http://www.epa.gov
  2. Bateson TF, Schwartz J. Children's response to air pollutants. J Toxicol Environ Health A 2008;71:238-43.
  3. Strickland MJ, Darrow LA, Klein M, Flanders WD, Sarnat JA, Waller LA, et al. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am J Respir Crit Care Med 2010;182:307-16. https://doi.org/10.1164/rccm.200908-1201OC
  4. Yamazaki S, Shima M, Ando M, Nitta H, Watanabe H, Nishimuta T. Effect of hourly concentration of particulate matter on peak expiratory flow in hospitalized children: a panel study. Environ Health 2011;10:15. https://doi.org/10.1186/1476-069X-10-15
  5. Kelly FJ, Fussell JC. Air pollution and airway disease. Clin Exp Allergy 2011;41:1059-71. https://doi.org/10.1111/j.1365-2222.2011.03776.x
  6. Nishimuta T, Kondo N, Hamasaki Y, Morikawa A, Nishima S. Japanese guideline for childhood asthma. Allergology International 2011;60:147-69. https://doi.org/10.2332/allergolint.11-RAI-0328
  7. Ueda K, Nitta H, Odajima H. The effects of weather, air pollutants, and Asian dust on hospitalization for asthma in Fukuoka. Environ Health Prev Med 2010;15:350-7. https://doi.org/10.1007/s12199-010-0150-5
  8. Odajima H, Yamazaki S, Nitta H. Decline in peak expiratory flow according to hourly short-term concentration of particulate matter in asthmatic children. Inhal Toxicol 2008;20:1263-72. https://doi.org/10.1080/08958370802311151
  9. Iskandar A. Andersen ZJ, Bonnelykke K, Ellermann T, Andersen KK, Bisgaard H. Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children. Thorax 2012;67:252-7. https://doi.org/10.1136/thoraxjnl-2011-200324
  10. Lin S, Liu X, Le LH, Hwang SA. Chronic exposure to ambient ozone and asthma hospital admissions among children. Environ Health Perspect 2008;116:1725-30. https://doi.org/10.1289/ehp.11184
  11. Meng YY, Rull RP, Wilhelm M, Lombardi C, Balmes J, Ritz B. Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health 2010;64:142-7. https://doi.org/10.1136/jech.2009.083576
  12. Lipsett M, Hurley S, Ostro B. Air pollution and emergency room visits for asthma in Santa Clara Country, California. Environ Health Perspect 1997;105:216-22. https://doi.org/10.1289/ehp.97105216
  13. Gauderman WJ, Avol E, Lurmann F, Kuenzli N, Gilliland F, Peters J, et al. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 2005;16:737-43. https://doi.org/10.1097/01.ede.0000181308.51440.75
  14. Selgrade MK, Plopper CG, Gilmour MI, Conolly RB, Foos BSP. Assessing the health effects and risks associated with children's inhalation exposures: asthma and allergy. J Toxicol Environ Health A 2008;71:196-207.
  15. Trasande L, Thurston GD. The role of air pollution in asthma and other pediatric morbidities. J Allergy Clin Immunol 2005;115:689-99. https://doi.org/10.1016/j.jaci.2005.01.056
  16. Gaudeman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, et al. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 2004;351:1057-67. https://doi.org/10.1056/NEJMoa040610
  17. Song S, Lee K, Lee YM, Lee JH, Lee SI, Yu SD, et al. Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis. Environ Res 2011;111:394-9. https://doi.org/10.1016/j.envres.2010.10.010
  18. Konishi S, Ng CFS, Stickley A, Nishihata S, Shinsugi C, Ueda K, et al. Particulate matter modifies the association between airborne pollen and daily medical consultations for pollinosis in Tokyo. Sci Total Environ 2014;499:125-32. https://doi.org/10.1016/j.scitotenv.2014.08.045
  19. Lim JM, Jeong JH, Lee JH, Moon JH, Chung YS, Kim KH. The analysis of $PM_{2.5}$ and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air 2011;2:145-55.