DOI QR코드

DOI QR Code

DISTRIBUTIONAL FRACTIONAL POWERS OF SIMILAR OPERATORS WITH APPLICATIONS TO THE BESSEL OPERATORS

  • Molina, Sandra Monica (Departamento de Matematica-Facultad de Ciencias Exactas y Naturales-Universidad Nacional de Mar del Plata)
  • Received : 2017.11.05
  • Accepted : 2018.02.01
  • Published : 2018.10.31

Abstract

This paper provides a method to study the nonnegativity of certain linear operators, from other operators with similar spectral properties. If these new operators are formally self-adjoint and nonnegative, we can study the complex powers using an appropriate locally convex space. In this case, the initial operator also will be nonnegative and we will be able to study its powers. In particular, we have applied this method to Bessel-type operators.

Keywords

References

  1. G. Altenburg, Bessel-Transformationen in Raumen von Grundfunktionen uber dem Intervall $\Omega$ = (0, ${\infty}$) und deren Dualraumen, Math. Nachr. 108 (1982), 197-218. https://doi.org/10.1002/mana.19821080116
  2. J. J. Betancor, A. J. Castro, and P. R. Stinga, The fractional Bessel equation in Holder spaces, J. Approx. Theory 184 (2014), 55-99. https://doi.org/10.1016/j.jat.2014.05.003
  3. I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/1961), 307-336.
  4. I. Marrero and J. J. Betancor, Hankel convolution of generalized functions, Rend. Mat. Appl. (7) 15 (1995), no. 3, 351-380.
  5. C. Martinez and M. Sanz, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187, North-Holland Publishing Co., Amsterdam, 2001.
  6. C. Martinez, M. Sanz, and F. Periago, Distributional fractional powers of the Laplacean. Riesz potentials, Studia Math. 135 (1999), no. 3, 253-271.
  7. S. Molina and S. E. Trione, n-dimensional Hankel transform and complex powers of Bessel operator, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 897-911. https://doi.org/10.1080/10652460701511244
  8. F. Oberhettinger, Tables of Bessel Transforms, Springer-Verlag, New York, 1972.
  9. W, Rudin, Functional Analisys, Second Edition, McGraw-Hill Inc, 1991.
  10. G. N. Watson, A Treatise on the Theory of Bessel Functions, reprint of the second (1944) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.
  11. A. H. Zemanian, Generalized Integral Transformations, Second Edition, Dover Publications, Inc., New York, 1987.