DOI QR코드

DOI QR Code

Polypropylene 복합방적사의 섬도와 혼용율에 따른 물성

Physical Properties of Polypropylene Blended Yarns with Yarn Counts and Blended Ratio

  • Kim, Jeong-Hwa (Dept. of Clothing and Textiles, Chungnam National University) ;
  • Lee, Jung-soon (Dept. of Clothing and Textiles, Chungnam National University)
  • 투고 : 2018.07.27
  • 심사 : 2018.10.05
  • 발행 : 2018.10.31

초록

Polypropylene fibers, while having many advantages such as light weight, sweat fast drying, water-repellent, drainage, thermal insulation, anti-static property has a drawback in dyeing. In recent years, the development of dyeable polypropylene fibers has expanded its value in the textile market. The purpose of this study is to fabricate composite spun yarns using polypropylene, acrylic, rayon and wool and to analyze tensile properties, uniformity characteristics, bending properties, hairiness, and surface shape according to the degree of fineness and blended ratio. The specimens consisted of 100% polypropylene spun yarn pp30, pp40 and ppa(pp/acrylic), ppr(pp/rayon), ppw(pp/wool), 5 altogether sed in this study. The results of the study are as follows. The breaking strength of polypropylene spun yarn blended with rayon and acrylic was higher than that of 100% polypropylene spun yarn. The polypropylene spun yarn is higher the fineness been shown to decrease the breaking strength and elongation. The bending properties of polypropylene spun yarns were in the order of ppa>ppr>pp40>pp30>ppw. The unevenness of ppw, ppr, and ppa was higher than pp40 and pp30. With the exception of ppw with crimp properties, pp30 and pp40 were found to have a hairiness index greater than ppr, ppa. In the microscopic photographs of polypropylene spun yarn, pp30, which had the highest hairiness index, was found to have a thick yarn and a large number of hairs, and ppw had hairs of 3 mm or more protruding elongated outwardly.

키워드

참고문헌

  1. Ahmed, M. (1982). Polypropylene fibers, science and technology (Vol. 5). New York: Elsevier Science & Technology.
  2. Baykal, P. D., Babaarslan, O., & Erol, R. (2006). Prediction of strength and elongation properties of cotton/polyester-blended OE rotor yarns. Fibers & Textiles, 14(1), 18-21.
  3. Chapman, B. M. (1974). The bending and creasing of multicomponent viscoelastic fiber assemblies. Textile Research Journal, 44(4), 306-309. doi:10.1177/004051757404400405
  4. Chen, Q., & Zhao, T. (2015). The thermal decomposition and heat release properties of the nylon/cotton, polyester/cotton and nomex/cotton blend fabrics. Textile Research Journal, 86(17), 1859-1868. doi:10.1177/0040517515617423
  5. Choi, H. Y., Choi, H. N., Lee, S. W., Hong, Y. K., & Lee, S. G. (2011). Effects of blend ratio and fineness on the physical properties of CDP/tencel blended yarns. Textile Science and Engineering, 48(3), 187-192.
  6. Das, A., Kothari, V. K., & Balaji, M. (2007). Studies on cotton-acrylic bulked yarns and fabrics. Part I: Yarn characteristics. The Journal of the Textile Institute, 98(3), 261-267. doi:10.1080/00405000701550163
  7. Das, B., Das, A., Kothari, V. K., Fangueiro, R., & Araujo, M. (2009). Study on moisture transmission properties of PV-blended fabrics. The Journal of the Textile Institute, 100(7), 588-597. doi:10.1080/00405000802125097
  8. Dayioglu, H. (1992). Polymeric dye receptors for disperse dyeable polypropylene fibers. Journal of Applied Polymer Science, 46, 1539-1545. doi:10.1002/app.1992.070460904
  9. Fuh, P. H., Cheng, L. D., & Yu, X. Y. (2003). Relationship between the hairness and twisting principles of solospun and ring spun yarns. In: Annual conference of the Textile Institute, Shanghai, China, 23-27.
  10. Geraldes, M. J., Hes, L., & Araujo, M. (2002). How to improve the thermal comfort with high performance pp fibers. In: Proceeding of the 2nd AUTEX Conference, Bruges, Belgium, July, p. 428.
  11. Gupta, N. P., Majumdar, A., Bhattacharya, G. K., Sur, D., & Roy, D. (1982). Chemically texturizing jute and jute-polypropylene blended yarns. Textile Research Journal, 52(11), 694-702. doi:10.1177/004051758205201103
  12. Huh, Y., Kim, Y. R., & Oxenham, W. (2002). Analyzing structural and physical properties of ring, rotor, and friction spun yarns. Textile Research Journal, 72(2), 156-163. doi:10.1177/004051750207200212
  13. Kakvan, A., Najar, S. S., & Psikuta, A. (2015). Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. The Journal of the Textile Institute, 106(6), 674-682. doi:10.1080/00405000.2014.934045
  14. Karthik, T., Senthilkumar, P., & Murugan, R. (2016). Analysis of comfort and moisture management properties of polyester/milkweed blended plated knitted fabrics for active wear applications. Journal of Industrial Textiles, 47(5), 897-920. doi:10.1177/1528083716676814
  15. Kang, D. H., & Lee, J. S. (2009a). Physical performance of metalic jacquard fabrics. Journal of the Korean Society of Clothing and Textiles, 33(1), 149-159. doi:10.5850/JKSCT.2009.33.1.
  16. Kang, D. H., & Lee, J. S. (2009b). Sensibility evaluation of metalic jacquard fabrics. Journal of the Korean Society of Clothing and Textiles, 33(2), 299-307. doi:10.5850/JKSCT.2009.33.2.
  17. Kang, T. J. (1987). The hairiness measurement method of spun fiber and effect of the spinning processing condition. Journal of Korean Fiber Society, 24(5), 103-113.
  18. Kim, H. A. (2015a). Wearing performance of garment for emotional knitted fabrics made of PTT/Tencel/Cotton MVS blended yarns(II) - Physical property of knitted fabric according to yarns structure -. Fashion & Textile Research Journal, 17(6), 1020-1029. doi:10.5805/SFTI.2015.17.6.1020
  19. Kim, H. A., Son, H., & Kim, S. J. (2015). Effect of hybrid yarn structure composed of PP/Tencel/Quick dry PET on the physical property of fabric for high emotional garment. Fashion & Textile Research Journal, 17(3), 462-475. doi:10.5805/SFTI.2015.17.3.462
  20. Kim, H. (2015b). Physical property of PTT/wool/modal air vortex yarns for high emotional garment. Journal of the Korean Society of Clothing and Textiles, 39(6), 877-884. doi:10.5850/JKSCT.2015.39.6.877
  21. Kim, H. S., & Na, M. H. (2014). Evaluation of texture image and preference to men's suit fabrics according to mechanical properties, hand and fabric information of wool blended fabrics. Korean Journal of Human Ecology, 23(2), 317-328. doi:10.5934/kjhe.2014.23.2.317
  22. Koo, Y. S., (2001). Bending Behavior of Coated Yarns. Fibers and Polymers, 2(3), 148-152. doi:10.1007/BF02875328
  23. Kuo, C. F. J., Lan, W. L., Chen, S. H., Lin, F. S., & Dong, M. Y. (2018). Development of disperse dye polypropylene fiber and process parameter optimization Part I: Development of dyeable polypropylene fiber and parameter optimization. Textile Research Journal, 88(1), 3-13. doi:10.1177/0040517516673335
  24. Kuo, C. F. J., Lan, W. L., Dong, M. Y., Chen, S. H., & Lin, F. S. (2017). Development of disperse dyes polypropylene fiber and process parameter optimization Part II: Dyeable polypropylene fiber production and melt spinning process parameter optimization. Textile Research Journal, 88(13), 1505-1516. doi:10.1177/0040517517703600
  25. Kwon, H. S., Park, J. H., Choi, J. H., & Kim, J. H. (2005). Development trend of dyeable polypropylene fiber. Fiber Technology and Industry, 9(3), 301-311.
  26. Lokhande, H. T., Thakar, V. S., & Shukla, S. R. (1984). Electrokinetic properties of acrylic acid-and methaacrylic acid-grafted polypropylene during chemically initiated graft copolymerization. Journal of the Applied Polymer Science, 29(10), 2989-2996. doi:10.1002/app.1984.070291005
  27. Mahbub, R. F., Wang, L., Arnold, L., Kaneslingam, S., & Padhye, R. (2014). Thermal comport properties of Kevlar and Kevlar/wool fabrics. Textile Research Journal, 84(19), 2094-2102. doi:10.1177/0040517514532157
  28. Piller, B. (1986). Integrated multi-layered knitted fabrics - A new generation of textiles polypropylene fibers. Melliand Textilberich, 67, 412-416.
  29. Sa, A. N., & Lee, J. S. (2015). Physical properties of polyester, tencel and cotton MVS blended yarns with yarn counts and blended ratio. Fashion & Textile Research Journal, 17(2), 287-294. doi:10.5805/SFTI.2015.17.2.287
  30. Sciarratta, V., Vohrer, U., Hegemann, D., Muller, M., & Oehr, C. (2003). Plasma functionalization of polypropylene with acrylic acid. Surface and Coatings Technology, 174, 805-810. doi:10.1016/S0257-8972(03)00564-4
  31. Sekar, N. (2000). Dyeable polypropylene fibers : On the research front review of development. Colourage, 47(2), 33-34.
  32. Son, T. W., Lim, S. K., Chang, C. M., Kim, S. S., & Cho, I. S. (1999). Physical modification of polypropylene: preparation of fibers dyeable with disperse dyes. Coloration Technology, 115(12), 366-369. doi:10.1111/j.1478-4408.1999.tb00294.x
  33. Teli, M. D., & Desai, P. V. (2013). Polypropylene/Poly(trimethylene terephthalate) meltblend fibres with enhanced dyeability. International Journal of Engineering Research & Technology, 2(7), 24-29.
  34. Ucar, N., & Yilmaz, T. (2004). Thermal properties of $1{\times}\;1,\;2{\times}\;2,\;3{\times}\;3$ rib knit fabrics. Fibres & Textiles in Eastern Europe, 3(47), 34-38.
  35. Wang, X., Miao, M., & How, Y. (1997). Studies of jetring spinning part I:Reducing yarn hairiness with the jetring. Textile Research Journal, 67(4), 253-258. doi:10.1177/004051759706700403
  36. Yang, J. S., Kim, M., & Kim, G. H. (2005). Compact ring spinning technology. Fiber Technology and Industry, 9(2), 126-134.
  37. Yea, S. J., & Song, W. S. (2013). Comfort and physical properties of linen blended knitted fabrics. Journal of the Korean Society of Clothing and Textiles, 37(5), 715-723. doi:10.5850/JKSCT.2013.37.5.715
  38. Yu, C., Zhu, M., Shong, X., & Chen, Y. (2001). Study on dyeable polypropylene fiber and its properties. Journal of the Applied Polymer Science, 82(13), 3172-3176. doi:10.1002/app.2175