DOI QR코드

DOI QR Code

Improved Thermal Conductivities of Epoxy Resins Containing Surface Functionalized BN Nanosheets

  • Weng, Ling (Suzhou Jufeng Electrical Insulation System Co., Ltd) ;
  • Wang, HeBing (School of Materials Science and Engineering Harbin University of Science and Technology) ;
  • Zhang, Xiaorui (School of Materials Science and Engineering Harbin University of Science and Technology) ;
  • Liu, Lizhu (School of Materials Science and Engineering Harbin University of Science and Technology) ;
  • Zhang, Hexin (College of Materials Science and Chemical Engineering Harbin Engineering University)
  • Received : 2018.07.03
  • Accepted : 2018.10.11
  • Published : 2018.11.30

Abstract

The hexagonal boron nitride nanosheets (BN) were firstly treated by silane coupling agents 3-aminopropyltriethoxysilane (KH550) and 3-glycidoxypropyl-trimethoxysilane (KH560) to introduce some amino and epoxy (EP) groups on the BN surface. These modified BN nanosheets were incorporated into an EP matrix to prepare BN@KH560/EP composites with excellent thermal conductivity and electrical insulation properties. Results showed that the thermal conductivity of BN@KH560/EP composite with 20 vol% BN dosage was found to be 0.442 W/($m{\cdot}K$), which was 81% higher than that of pure EP resin. Both BN/EP composites treated by KH550 and KH560 showed rather good electrical insulation properties, although the dielectric constant of BN@KH550/EP composites were slightly higher than BN@KH560/EP composites. Moreover, BN@KH560/EP composites also showed better thermal and mechanical properties than that of BN@KH550/EP composites.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities

References

  1. Z. Huang, T. Wang, X. Zhang and L. Zheng, J. Compos. Mate. 50, 58 (2016).
  2. S. L. Chung and J. L. Lin, Molecules, 21, 670 (2016). https://doi.org/10.3390/molecules21050670
  3. J. T. Hu, Y. Huang, X. L. Zeng, Q. Li, L. L. Ren, R. Sun, J. B. Xu and C. P. Wong, Compos. Sci. Technol. 160, 127 (2018). https://doi.org/10.1016/j.compscitech.2018.01.045
  4. J. Wu, R. Morrell, C. Allen, P. Mildeova, E. Turzo-Andras, U. Hammerschmidt, E. Rafeld, A. Blahut and J. Hameury, J. Int. Thermophys. 38, 66 (2017). https://doi.org/10.1007/s10765-017-2200-3
  5. K. Kim, H. Ju and J. Kim, Polymer. 91, 74 (2016). https://doi.org/10.1016/j.polymer.2016.03.066
  6. Y. Zhou, F. Liu and H. Wang, Polym. Composite. 38, 803 (2017). https://doi.org/10.1002/pc.23641
  7. C. P. Wong and R. S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (2015).
  8. A. Tabarrae and X. Wang, Appl. Phys. Lett. 108, 3766 (2016).
  9. C. Hung, J. Hurst, D. Santiago, M. Lizcano and M. Kelly, J. Am. Ceram. Soc. 100, 515 (2017) https://doi.org/10.1111/jace.14638
  10. H. Tao, X. L. Zeng, Y. M. Yao, R. Sun, F. L. Meng, J. B. Xu and C. P. Wong, RSC. Adv. 7, 23355 (2017). https://doi.org/10.1039/C6RA28503A
  11. R. Seokgyu, K. Kim and J. Kim, Polym. Compos. 39, 1692 (2017).
  12. D. H. Tang, J. Q. Su, M. Q. Kong, Z. G. Zhao, Q. Yang, Y. J. Huang, X. Liao and Y. H. Niu, Polym. Compos. 37, 2611 (2016). https://doi.org/10.1002/pc.23455
  13. J. W. Gu, Q. Y. Zhang, J. Dang and C. Xie, Polym. Adv. Technol. 23, 1025 (2012). https://doi.org/10.1002/pat.2063
  14. K. Kim, M. Kim and J. Kim, Polym. Adv. Technol. 25, 791 (2014). https://doi.org/10.1002/pat.3291
  15. J. F. Fu, L. Y. Shi, D. S. Zhang, Q. D. Zhong and Y. Chen, Polym. Eng. Sci. 50, 1809 (2010). https://doi.org/10.1002/pen.21705
  16. J. W. Gu, Y. Q. Guo, X. T. Yang, C. B. Liang, W. C. Geng, L. Tang, N. Li and Q. Y. Zhang, Compos. A Appl. S. 95, 267 (2017). https://doi.org/10.1016/j.compositesa.2017.01.019
  17. J. W. Gu, W. C. Dong, Y. S. Tang, Y. Q. Guo, L. Tang, J. Kong, S. Tadakamalla, B. Wang and Z. H. Guo, J. Mater. Chem. C. 5, 6929 (2017). https://doi.org/10.1039/C7TC00222J
  18. A. L. Feng, Z. R. Jia, Q. Yu, H. X. Zhang and G. L. Wu, Nano. 13, 33 (2018).
  19. A. L. Feng, G. L. Wu, C. Pan and Y. Q. Wang, J. Nanosci. Nanotechnol. 17, 3859 (2017). https://doi.org/10.1166/jnn.2017.13987
  20. Y. M. Chen, X. Gao, J. L. Wang, W. He, V. V. Silberschmidt, S. X. Wang, Z. H. Tao and H. Xu, J. Appl. Polym. Sci. 132, 16 (2015).
  21. X. Y. Huang, C. Y. Zhi, P. K. Jiang, D. Golberg, Y. Bando and T. Tanaka, Adv. Funct. Mater. 23, 1824 (2013). https://doi.org/10.1002/adfm.201201824
  22. I. Ozaytekin, H. E. Turedi and G. Ahmetli, Polym. Compos. 37, 3423 (2016). https://doi.org/10.1002/pc.23542
  23. J. H. Yu, H. L. Mo and P. K. Jiang, Polym. Adv. Technol. 26, 514 (2015). https://doi.org/10.1002/pat.3481
  24. J. W. Wang, H. R. Li, G. H. Li, Z. X. Liu, Q. X. Zhang, N. Y. Wang and X. W. Qu, J. Appl. Polym. Sci. 134, 25 (2017).
  25. T. L. Li and L. C. Hsu, J. Appl. Polym. Sci. 121, 916 (2011). https://doi.org/10.1002/app.33631
  26. A. Rybak, K. Gaska, C. Kapusta, F. Toche and V. Salles, Polym. Adv. Technol. 28, 1676 (2017). https://doi.org/10.1002/pat.4038
  27. J. P. Hong, S. W. Yoon, T. Hwang, J. S. Oh, S. C. Hong, Y. Lee, J. D. Nam, M. H. Bhuiya and K. J. Kim, Polym. Eng. Sci. 52, 2435 (2012). https://doi.org/10.1002/pen.23190
  28. K. Wattanakul, H. Manuspiya and N. Yanumet, J. Appl. Polym. Sci. 119, 3234 (2011). https://doi.org/10.1002/app.32889
  29. R. Ruh, K. Y. Donaldson and D. P. H. Hasselman, J. Am. Ceram. Soc. 75, 2887 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05525.x