DOI QR코드

DOI QR Code

Control of Wettability Using Regularly Ordered Two-Dimensional Polymeric Wavy Substrates

  • Yi, Dong Kee (Department of Chemistry, Myongji University)
  • Received : 2018.07.30
  • Accepted : 2018.09.10
  • Published : 2018.10.31

Abstract

Two-dimensional poly(dimethylsiloxane) (PDMS) films with wavy patterns were studied in order to investigate reversible and irreversible wetting effects. Pre-strained, surface oxidized layers of PDMS were used to form relieved wavy geometries, on which hydrophobic functionalization was carried out in order to produce irreversible wetting effects. Wavy-patterned PDMS films showed time-dependent reversible wetting effects. The degree of surface wettability could be tuned by the choice of wavy groove geometries. And the groove geometries were controlled via $O_2$ plasma treatment and mechanical pre-straining. The pre-strained, buckled PDMS films were applied to the fabrication of hydrophobic polystyrene nano-patterns using colloidal self-assembly, where the colloids were arrayed in two-dimensional way. The wavy polystyrene films were found to be more hydrophobic relative to flat polystyrene films. The grooving methodology used in this study could be applied to enhancing the hydrophobicity of other types of polymeric thin films, eliminating the need for chemical treatment.

Keywords

Acknowledgement

Supported by : NRF, Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. D. K. Yi, M. J. Kim, L. Turner, K. S. Breuer and D.-Y. Kim, Biotech Letters 28, 169 (2006). https://doi.org/10.1007/s10529-005-5331-8
  2. L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang and D. Zhu, Angew. Chem., Int. Ed. 41, 1221 (2002). https://doi.org/10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO;2-G
  3. L. Li, Y. Bai, L. Li, S. Wang and T. A. Zhang, Adv. Mater. 29, 1702517 (2017). https://doi.org/10.1002/adma.201702517
  4. V. Pandiyarasan, S. Suhasini, J. Archana, M. Navaneethan, A. Majumdar, Y. Hayakawa and H. Ikeda, Appl. Surf. Sci. 418, 352 (2017). https://doi.org/10.1016/j.apsusc.2016.12.202
  5. Y. Wang, E. Bella, C. S. D. Lee, C. Migliaresi, L. Pelcastre, Z. Schwartz, B. D. Boyan and A. Motta, Biomaterials 31, 4672 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.006
  6. T. Zhu, C. Cai, J. Guo, R. Wang, N. Zhao and J. Xu, ACS Appl. Mater. Interfaces 9, 10224 (2017). https://doi.org/10.1021/acsami.7b00149
  7. T. S. Kustandi, V. D. Samper, D. K. Yi, W. S. Ng, P. Neuzil and W. Sun, Adv. Funct. Mater. 17, 2211 (2007). https://doi.org/10.1002/adfm.200600564
  8. X.-M. Li, D. Reinhoudt and M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007). https://doi.org/10.1039/b602486f
  9. J. P. Youngblood and T. J. McCarthy, Macromolecules 32, 6800 (1999). https://doi.org/10.1021/ma9903456
  10. W. Chen, A. Y. Fadeev, M. C. Hsieh, D. O. Ner, O. Ner, J. O. Ner and T. J. McCarthy, Langmuir 15, 3395 (1999). https://doi.org/10.1021/la990074s
  11. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley and K. K. Gleason, Nano Lett. 3, 1701 (2003). https://doi.org/10.1021/nl034704t
  12. J. Hong, W. K. Bae, H. Lee, S. Oh, K. Char, F. Caruso and J. Cho, Adv. Mater. 19, 4364 (2007). https://doi.org/10.1002/adma.200701362
  13. G. Zhang, D. Y. Wang, Z. Z. Gu and H. Mohwald, Langmuir 21, 9143 (2005). https://doi.org/10.1021/la0511945
  14. T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang and D. Zhu, Angew. Chem. Int. Ed. 43, 357 (2004) 357. https://doi.org/10.1002/anie.200352565
  15. S. Wang, H. Liu, D. Liu, X. Ma, X. Fang and L. Jiang, Angew. Chem. Int. Ed. 46, 3915 (2007). https://doi.org/10.1002/anie.200700439
  16. J. T. Han, D. H. Lee, C. Y. Ryu and K. Cho, J. Am. Chem. Soc. 126, 4796 (2004). https://doi.org/10.1021/ja0499400
  17. L. Gao and T. J. McCarthy, Langmuir 23, 3762 (2007). https://doi.org/10.1021/la062634a
  18. R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936). https://doi.org/10.1021/ie50320a024
  19. A. B. D. Cassie and S. Baxter, Trans. Faraday. Soc. 40, 546 (1944). https://doi.org/10.1039/tf9444000546
  20. M. K. Kim, D. K. Yi and U. Paik, Langmuir 26, 7552 (2010). https://doi.org/10.1021/la9043599
  21. K. H. Cheong, D. K. Yi, J.-G. Lee, J.-M. Park, M. J. Kim, J. B. Edel and C. Ko, Lab on a Chip 8, 810 (2009).
  22. D.-Y. Khang, H. Jiang, Y. Huang and J. A. Rogers, Science 311, 208 (2006). https://doi.org/10.1126/science.1121401
  23. D.-Y. Khang, J. Xiao, C. Kocabas, S. MacLaren, J. Banks, H. Jiang, Y. Huang and J. A. Rogers, Nano Lett. 8, 124 (2008). https://doi.org/10.1021/nl072203s
  24. Y. Xia and G. M. Whitesides, Soft Lithography, Angew. Chem. Int. Ed. 37, 551 (1998).
  25. N.Bowden, S. Brittain, A. G.Evans, J.W.Hutchinson and G. M.Whitesides, Science 393, 146 (1998).
  26. W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson and G. M. Whitesides, Langmuir 16, 3497 (2000). https://doi.org/10.1021/la991302l
  27. M. H. Kim, J. Y. Choi, H. K. Choi, S. M. Yoo, O. O. Park, D. K. Yi, S. J. Choi and H. J. Shin, Adv. Mater. 20, 457 (2008). https://doi.org/10.1002/adma.200700956
  28. D. K. Yi, J-.H. Lee, J. A. Rogers and U. Paik, Appl. Phys. Lett. 94, 084104 (2009). https://doi.org/10.1063/1.3089219
  29. Y. B. Pyun, J. Yi, D. H. Lee, K. S. Son, G. Liu, D. K. Yi, U. Paik and W. I. Park, J. Mater. Chem. 20, 5136 (2010). https://doi.org/10.1039/c0jm00011f
  30. Y. Zhu, M. Ramasamy and D. K. Yi, ACS Appl. Mater. Interfaces 6, 15078 (2014). https://doi.org/10.1021/am503153v
  31. Ned Bowden, Wilhelm T. S. Huck, Kateri E. Paul and George M. Whitesides, Appl. Phys. Lett. 75, 2557 (1999). https://doi.org/10.1063/1.125076
  32. Y. Li, J. Q. Pham, K. P. Johnston and P. F. Green, Langmuir 23, 9785 (2007). https://doi.org/10.1021/la0636311