Acknowledgement
Supported by : NSFC, Science and Technology Foundation of Sichuan Province, Nanjing University
References
- M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, 1969.
- D. Bravo, J. Gillespie, and M. Hovey, The stable module category of a general ring, arXiv:1405.5768, 2014.
- E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000.
- E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
- Z. Gao and Z. Huang, Weak injective covers and dimension of modules, Acta Math. Hungar. 147 (2015), no. 1, 135-157. https://doi.org/10.1007/s10474-015-0540-7
- Z. Gao and F. Wang, Weak injective and weak flat modules, Comm. Algebra 43 (2015), no. 9, 3857-3868. https://doi.org/10.1080/00927872.2014.924128
- Z. Gao and T. Zhao, Foxby equivalence relative to C-weak injective and C-weak flat modules, J. Korean Math. Soc. 54 (2017), no. 5, 1457-1482. https://doi.org/10.4134/JKMS.J160528
-
Y. Geng and N. Ding,
$\mathcal{W}$ -Gorenstein modules, J. Algebra 325 (2011), 132-146. - R. Gobel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006.
- M. Hashimoto, Auslander-Buchweitz Approximations of Equivariant Modules, London Mathematical Society Lecture Note Series, 282, Cambridge University Press, Cambridge, 2000.
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- H. Holm and P. Jrgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010
- H. Holm and P. Jrgensen, Cotorsion pairs induced by duality pairs, J. Commut. Algebra 1 (2009), no. 4, 621-633. https://doi.org/10.1216/JCA-2009-1-4-621
- H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
- M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z. 241 (2002), no. 3, 553-592. https://doi.org/10.1007/s00209-002-0431-9
- J. Hu and D. Zhang, Weak AB-context for FP-injective modules with respect to semid-ualizing modules, J. Algebra Appl. 12 (2013), no. 7, 1350039, 17 pp.
- Z. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169.
- Z. Liu, Z. Huang, and A. Xu, Gorenstein projective dimension relative to a semidualizing bimodule, Comm. Algebra 41 (2013), no. 1, 1-18. https://doi.org/10.1080/00927872.2011.602782
- J. J. Rotman, An Introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009.
- S. Sather-Wagstaff, T. Sharif, and D. White, AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules, Algebr. Represent. Theory 14 (2011), no. 3, 403-428. https://doi.org/10.1007/s10468-009-9195-9
- B. Stenstrom, Rings of Quotients, Springer-Verlag, New York, 1975.
- F. Wang, L. Qiao, and H. Kim, Super finitely presented modules and Gorenstein projective modules, Comm. Algebra 44 (2016), no. 9, 4056-4072.
-
X. Yang, Gorenstein categories
$\mathcal{G(X,Y,Z)}$ and dimensions, Rocky Mountain J. Math. 45 (2015), no. 6, 2043-2064. - X. Yang and Z. Liu, V-Gorenstein projective, injective and flat modules, Rocky Mountain J. Math. 42 (2012), no. 6, 2075-2098. https://doi.org/10.1216/RMJ-2012-42-6-2075