DOI QR코드

DOI QR Code

유전자편집 작물의 개발 현황 및 농업생명공학기술의 국가 경쟁력 강화

Strengthening the competitiveness of agricultural biotechnology through practical application of gene editing technology

  • 이신우 (경남과학기술대학교 생명과학대학 농학.한약자원학부)
  • Lee, Shin-Woo (Dept. of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology)
  • 투고 : 2018.07.03
  • 심사 : 2018.09.12
  • 발행 : 2018.09.30

초록

본 논문은 현재까지 개발된 유전자편집 기술들의 작용기작 및 장 단점 등을 비교하고 이들 기술로 개발된 유전자편집(site-directed mutagenesis, SDN)작물들의 안전성 평가를 위한 분류 기준 등을 살펴보았다. 또한 2016년부터 2018년 5월 현재까지 발표된 유전자편집 식물 개발과 관련된 논문들을 조사하여 ZFN, TALENS, CRISPR기술별 발표 논문 추세를 조사한 결과 CRISPR기술을 적용한 연구건수가 절대적으로 많았다. 또한 애기장대와 벼를 대상으로 수행한 연구건수가 가장 많았으며, 담배와 토마토, 밀, 옥수수 등이 그 뒤를 이었다. 하지만 발표건수는 아직 1~2건에 해당하지만 대상 식물들은 주곡작물을 포함하여 화훼, 채소, 과수 등으로 다양하게 그 응용 범위가 확대되고 있는 것으로 조사되었다. 특히 실용화 또는 향후 상업화를 목표로 한 연구건수도 해마다 증가하는 추세에 있으며 그 응용 범위도 유용단백질 또는 물질의 대량생산을 위한 대사공학 연구와 바이러스, 세균, 곰팡이 등에 대한 병저항성 작물의 개발, 가뭄 등의 무생물적 환경스트레스 저항성 작물, 수량이 증대된 작물 등의 개발에 집중되었다. 이 외에도 단위결실 토마토, 웅성불임성 이용 hybrid벼, 탈립 저항성 증진 등으로 응용 범위가 점점 다양화되어 가고 있음을 알 수 있었다. 또한 미국 농무성의 동 식물 검역소에서 허가를 득한 CRISPR유전자편집 작물의 건수도 해마다 증가하여 조만간 이들이 국제 종자시장에 출시될 것으로 전망된다.

In this paper, mechanisms of gene editing technologies including ZFN, TALENS and CRISPR were briefly discussed with mutual advantages and disadvantages. Classification criteria of gene edited, site-directed mutagenesis (SDN) crops for regulatory purpose were also discussed. The number of studies using CRISPR technology was high and studies conducted on Arabidopsis thaliana and rice were highest, followed by tobacco, tomato, wheat, and corn. It has been applied to a variety of plants such as other grain crops, flower crops, vegetable crops, and fruit trees. The number of studies focused on practical application or commercialization in the future were also increasing yearly, and the scope of studies also expanded to include research on metabolic engineering for mass production of useful proteins or substances, development of disease resistant crops against viruses, bacteria, and fungi, abiotic environmental stressresistant crops, and increased yields. In addition to this, it was revealed that application range is becoming more diversified, including the development of parthenocarpic tomatoes, hybrid rice lines using male sterility and increased shattering resistance Brassica napus. It was also revealed that the number of CRISPR gene edited crops permitted by the USDA(APHIS) increases yearly, to be released in the international seed market soon.

키워드

참고문헌

  1. Abe K, Araki E, Suzuki Y, Toki S, Saika H (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem pii: S0981-9428(18)30191-8. doi : 10.1016/j.plaphy.2018.04.033
  2. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473-1475 https://doi.org/10.1093/bioinformatics/btu048
  3. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin ES, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Scientific Reports 6:30620, DOI :10.1038/srep30620
  4. Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Nat Acad Sci USA 96:8774-8778 https://doi.org/10.1073/pnas.96.15.8774
  5. Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935-942 https://doi.org/10.1104/pp.17.00426
  6. Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirusmediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045-1058 doi :10.3389/fpls.2016.01045
  7. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326:1509-1512 https://doi.org/10.1126/science.1178811
  8. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors:finding plant genes for disease and defense. Curr Opin Plant Biol 13:394-401 https://doi.org/10.1016/j.pbi.2010.04.010
  9. Cao K, Cui L, Zhou X, Ye L, Zou Z, Deng S (2016) Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front Plant Sci 6:1213-1226
  10. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Aarazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140-1153 https://doi.org/10.1111/mpp.12375
  11. Chen K, Gao C(2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40:271-279 doi : 0.1016/j.jgg.2013.03.009 https://doi.org/10.1016/j.jgg.2013.03.009
  12. Cho SW, Kim S, Kim JM, Kim JS (2013a) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230-232 https://doi.org/10.1038/nbt.2507
  13. Cho SW, Lee J, Carroll D, Kim JS, Lee J (2013b) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195:1177-1180 https://doi.org/10.1534/genetics.113.155853
  14. Cornu TI, Thibodeau-Beganny S, Guh E, Alwin S, Eichtinger M, Joung JK, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Molecular Therapy 16:352-358 https://doi.org/10.1038/sj.mt.6300357
  15. Deng L, Wang H, Sun C, Li Q, Jiang H Du M, Li CB (2018) Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J Gen Genom 45:51-54 https://doi.org/10.1016/j.jgg.2017.10.002
  16. Dong C, Beetham P, Vincent K, Sharp P (2006) Oligonucleotide directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25:457-465 https://doi.org/10.1007/s00299-005-0098-x
  17. Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32: 927-934 https://doi.org/10.1046/j.1365-313X.2002.01481.x
  18. EASAC (European Academies Science Advisory Council) (2015)Statement on new breeding techniques. http://www.easac.eu/GGTSPU-styx2.jki.bund.de-6690-9894523-KsiSqGBHnPfPgltq-DAT/fileadmin/PDF_s/reports_statements/Easac_14_NBT.pdf. Accessed on 16 Feb 2016
  19. EFSA Panel on genetically modified organisms (2012) Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other site-directed nucleases with similar function. EFSA J. doi :10.2903/j.efsa.2012.2943
  20. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C (2011) Genome-wide determination of double-strand breaks reveals high specificity of zinc finger nucleases. Human Gene Therapy 21:1371-1371
  21. Gaj T, Gersbach CA, Barbas CF(2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405 doi :10.1016/j.tibtech.2013.04.004
  22. Glover A (2013) Euractiv-Interview. http://www.euractiv.com/science-policymaking/chief-eu-scientist-backs-damning-news-530693. Accessed on 16 Feb 2016
  23. Hanania U, Ariel T, Tekoah Y, Fux L, Sheva M, Gubbay Y, Weiss M, Oz D, Azulay Y, Turbovski A, Forster Y, Shaaltiel Y (2017) Establishment of a tobacco BY2 cell line devoid of plant specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 15:1120-1129 https://doi.org/10.1111/pbi.12702
  24. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742-752 https://doi.org/10.1111/tpj.12413
  25. Heap B (2013) Europe should rethink its stance on GM crops. Nature 498:409 https://doi.org/10.1038/498409a
  26. Hilscher J, Burstmayr H, Stoger E (2017) Targeted modification of plant genomes for precision crop breeding. Biotechnol J 12:1-4 DOI :10.1002/biot.201600173
  27. Hu X, Meng X, Liu Q, Li J, Wang K (2018). Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16:292-297 doi :10.1111/pbi.12771
  28. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241:271-284 https://doi.org/10.1007/s00425-014-2180-5
  29. Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205-219 https://doi.org/10.1007/s11103-005-2162-x
  30. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the IAP gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429-5433. doi :10.1128/jb.169.12.5429-5433.1987
  31. Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985 doi :10.3389/fpls.2018.00985
  32. Jansen, R, Embden JDV, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565-1575 doi :10.1046/j.1365-2958.2002.02839.x
  33. Jia H, Zhang Y, Orbovic V, Xu, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817-823 https://doi.org/10.1111/pbi.12677
  34. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41: e188. doi : 10.1093/nar/gkt780
  35. Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648-657 https://doi.org/10.1111/pbi.12663
  36. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821 doi :10.1126/science.1225829
  37. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648-651 https://doi.org/10.1126/science.1144956
  38. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156-1160 https://doi.org/10.1073/pnas.93.3.1156
  39. Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2016) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406, doi : 10.1038/ncomms14406
  40. Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide based site-specific modification of the tobacco acetolactate syntase gene. Plant Physiol 132:174-184 https://doi.org/10.1104/pp.102.016857
  41. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struc Bio 11:39-46 https://doi.org/10.1016/S0959-440X(00)00167-6
  42. Lee HJ, Kim E, Kim JS (2010a) Targeted chromosomal deletions in human cells using zinc finger nucleases. Gen Res 20:81-89 https://doi.org/10.1101/gr.099747.109
  43. Lee JH, Muhsin M, Atienza GA, Kwak DY, Kim SM, De Leon TB, Angeles ER, Coloquio E, Kondoh H, Satoh K, Cabunagan RC, Cabauatan PQ, Kikuchi S, Leung H, Choi IR (2010b) Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to rice tungro spherical virus. Mol Plant-Microbe Interact 23:29-38 https://doi.org/10.1094/MPMI-23-1-0029
  44. Lee HJ, Kweon J, Kim E, Kim SJ, Kim JS (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Gen Res 22:539-548 https://doi.org/10.1101/gr.129635.111
  45. Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus infection. Curr Biol 12:1046-1051 https://doi.org/10.1016/S0960-9822(02)00898-9
  46. Li T, Liu B, Spalding MH, Weeks DP Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392 https://doi.org/10.1038/nbt.2199
  47. Li X, Wang Y, Chen S, Tian H, Fu D, Zhu B, Luo Y, Zhu H (2018a) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559-571 doi :10.3389/fpls.2018.00559
  48. Li R, Li R, Li X, Fu D, Zhu B, Tian H, Luo Y, Zhu H (2018b) Multiplexed CRISPR/Cas9-mediated metabolic engineering of c-aminobutyric acid levels in Solanum lycopersicum. Plant Biotech J 16:415-427 https://doi.org/10.1111/pbi.12781
  49. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Stadler T, Li J, Ye Z, Du Y, Huang S, (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Gene 46:1220-1226 https://doi.org/10.1038/ng.3117
  50. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechol J 1-10, doi :10.1111/pbi.12927
  51. Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Kanchiswamy CN (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904-1913 doi :10.3389/fpls.2016.01904
  52. Matsumura KMAT (2010) Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference. Plant Biotechnol J 9:264-281
  53. Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216-3226 https://doi.org/10.1038/sj.emboj.7601750
  54. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174-182 doi: 10.1007/s00239-004-0046-3
  55. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 https://doi.org/10.1126/science.1178817
  56. Muller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C (2016) Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 24:636-644 doi : 10.1038/mt.2015.218
  57. Okuzaki A, Toriyama K (2004) Chimeric RNA/DNA oligonucleotide directed gene targeting in rice. Plant Cell Rep 22:509-512 https://doi.org/10.1007/s00299-003-0698-2
  58. Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus https://doi.org/10.1016/j.plaphy.2018.04.025
  59. Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389-400 doi : 10.1093/pcp/pcu170
  60. Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Rep 6:26685 DOI :10.1038/srep26685
  61. Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods 8:765-U115 https://doi.org/10.1038/nmeth.1670
  62. Pauwels K, Podevin N, Breyer D, Carroll D, Herman P (2014) Engineering nucleases for gene targeting: safety and regulatory considerations. Nat Biotechnol 31:18-27 doi :10.1016/j.nbt.2013.07.001
  63. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509-1519 https://doi.org/10.1111/pbi.12733
  64. Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629-637 https://doi.org/10.1387/ijdb.130194hp
  65. Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276-1288 https://doi.org/10.1111/mpp.12417
  66. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186-191 doi :10.1038/nature14299
  67. Reynard GB (1961) New source of the j2 gene governing jointless pedicel in tomato. Science 134:2102
  68. Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267-382
  69. Robinson RW (1980) Pleiotropic effects of the j-2 gene. TGC Report 30:32
  70. Romer P, Hahn S, Jordan T, Strau$\ss$ T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645-648 https://doi.org/10.1126/science.1144958
  71. Rodriguez-Leal D, Zachary H. Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470-480 https://doi.org/10.1016/j.cell.2017.08.030
  72. SAnchez-Leon S, Gil-Humanes J, Ozuna CV, Gimenez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902-910 https://doi.org/10.1111/pbi.12837
  73. Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 579:1167-1171 https://doi.org/10.1016/j.febslet.2004.12.086
  74. Sauer NJ, NarvAez-VAsquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schopke CR, Gocal FFW (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in Plants. Plant Physiol 170:1917-1928 https://doi.org/10.1104/pp.15.01696
  75. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JH (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207-216 https://doi.org/10.1111/pbi.12603
  76. Shibuya K, Watanabeb K, Ono M (2018) CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiol Biochem https://doi.org/10.1016/j.plaphy.2018.04.036
  77. Shimatania Z, Fujikuraa U, Ishiia H, Matsui Y, Suzuki M, Ueke Y, Taoka K, Terada R, Nishida K, Kondo A (2018) Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol Biochem https://doi.org/10.1016/j.plaphy.2018.04.028
  78. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Sohee Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports 6:27810 DOI :10.1038/srep27810
  79. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441 https://doi.org/10.1038/nature07992
  80. Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A, Jiang K, Ramos A, van der Knaap E, Eck JV, Zamir D, Eshed Y, Lippman ZB (2017a) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169:1142-1155 https://doi.org/10.1016/j.cell.2017.04.032
  81. Soyk S, Muller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Eck JV, Jimenez-Gomez JM, Zachary B Lippman ZB (2017b) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162-170 https://doi.org/10.1038/ng.3733
  82. Steinert J, Schim S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35:1429-1435 https://doi.org/10.1007/s00299-016-1981-3
  83. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase Mol Plant 9:628-631 https://doi.org/10.1016/j.molp.2016.01.001
  84. Sun YW, Jiao GA, Liu ZP, Zhang X, Li JY, Guo XP, Du WM, Du JL, Francis F, Zhao YD, Xia LQ (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298-313 doi :10.3389/fpls.2017.00298
  85. Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2014a) Knockout mice created by TALEN mediated gene targeting. Nat Biotechnol 31:23-24
  86. Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, SJ, Kim CH, Lee HW, Kim JS (2014b) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases 24:125-131 https://doi.org/10.1101/gr.163394.113
  87. Swiss National Science Foundation (2012) Benefits and risks of the deliberate release of genetically modified plants. National Research Programme NRP 59. http://www.nfp59.ch/e_index.cfm. Accessed on 16 Feb 2016
  88. Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y (2015) Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol J 13:1199-1208 https://doi.org/10.1111/pbi.12428
  89. Tieman D, Zhu G, Resende Jr. MFR, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H (2017) A chemical genetic roadmap to improved tomato flavor. Science 355: 391-394 https://doi.org/10.1126/science.aal1556
  90. Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports 7:507-515 DOI :10.1038/s41598-017-00501-4
  91. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293 https://doi.org/10.1038/nature.2016.19754
  92. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947-951 https://doi.org/10.1038/nbt.2969
  93. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11: e0154027. doi :10.1371/journal.pone.0154027
  94. Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Ono M (2017) CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Reports 7:10028-10037 DOI :10.1038/s41598-017-10715-1
  95. Wittmann S, Chatel H, Fortin MG, Laliberte J-F (1997) Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two hybrid system. Virology 234:84-92 https://doi.org/10.1006/viro.1997.8634
  96. Woo JW, Kim J, Kwon SI, CorvalAn C, Cho SW, Kim H, Kim SG, Kim ST, Choe SH, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162-1165 https://doi.org/10.1038/nbt.3389
  97. Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q, Asmutola P (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate longshelf life tomato lines. Scientific Reports 7:11874-11873, DOI :10.1038/s41598-017-12262-1
  98. Zaidi SS, Mahfouz MM, Mansoor S (2017). CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550-553 doi : 10.1016/j.tplants.2017.05.001
  99. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided 624 endonuclease of a class 2 CRISPR-Cas system. Cell 163:759-771 https://doi.org/10.1016/j.cell.2015.09.038
  100. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F. et al. (2017) Multiplex gene editing by CRISPRCpf1 using a single crRNA array. Nat Biotechnol 35:31-34 doi :10.1038/nbt.3737
  101. Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16:1415-1423, doi :10.1111/pbi.12881
  102. Zhou H, He, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C (2016) Development of commercial thermosensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports 6:37395, DOI :10.1038/srep37395
  103. Zhu T, Peterson DJ, Tagliani L, St. Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Nat Acad Sci USA 96:8768-8773 https://doi.org/10.1073/pnas.96.15.8768
  104. Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555-558 https://doi.org/10.1038/75435