참고문헌
- Abe K, Araki E, Suzuki Y, Toki S, Saika H (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem pii: S0981-9428(18)30191-8. doi : 10.1016/j.plaphy.2018.04.033
- Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473-1475 https://doi.org/10.1093/bioinformatics/btu048
- Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin ES, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Scientific Reports 6:30620, DOI :10.1038/srep30620
- Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Nat Acad Sci USA 96:8774-8778 https://doi.org/10.1073/pnas.96.15.8774
- Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935-942 https://doi.org/10.1104/pp.17.00426
- Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirusmediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045-1058 doi :10.3389/fpls.2016.01045
- Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326:1509-1512 https://doi.org/10.1126/science.1178811
- Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors:finding plant genes for disease and defense. Curr Opin Plant Biol 13:394-401 https://doi.org/10.1016/j.pbi.2010.04.010
- Cao K, Cui L, Zhou X, Ye L, Zou Z, Deng S (2016) Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front Plant Sci 6:1213-1226
- Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Aarazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140-1153 https://doi.org/10.1111/mpp.12375
- Chen K, Gao C(2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40:271-279 doi : 0.1016/j.jgg.2013.03.009 https://doi.org/10.1016/j.jgg.2013.03.009
- Cho SW, Kim S, Kim JM, Kim JS (2013a) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230-232 https://doi.org/10.1038/nbt.2507
- Cho SW, Lee J, Carroll D, Kim JS, Lee J (2013b) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195:1177-1180 https://doi.org/10.1534/genetics.113.155853
- Cornu TI, Thibodeau-Beganny S, Guh E, Alwin S, Eichtinger M, Joung JK, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Molecular Therapy 16:352-358 https://doi.org/10.1038/sj.mt.6300357
- Deng L, Wang H, Sun C, Li Q, Jiang H Du M, Li CB (2018) Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J Gen Genom 45:51-54 https://doi.org/10.1016/j.jgg.2017.10.002
- Dong C, Beetham P, Vincent K, Sharp P (2006) Oligonucleotide directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25:457-465 https://doi.org/10.1007/s00299-005-0098-x
- Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32: 927-934 https://doi.org/10.1046/j.1365-313X.2002.01481.x
- EASAC (European Academies Science Advisory Council) (2015)Statement on new breeding techniques. http://www.easac.eu/GGTSPU-styx2.jki.bund.de-6690-9894523-KsiSqGBHnPfPgltq-DAT/fileadmin/PDF_s/reports_statements/Easac_14_NBT.pdf. Accessed on 16 Feb 2016
- EFSA Panel on genetically modified organisms (2012) Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other site-directed nucleases with similar function. EFSA J. doi :10.2903/j.efsa.2012.2943
- Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C (2011) Genome-wide determination of double-strand breaks reveals high specificity of zinc finger nucleases. Human Gene Therapy 21:1371-1371
- Gaj T, Gersbach CA, Barbas CF(2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405 doi :10.1016/j.tibtech.2013.04.004
- Glover A (2013) Euractiv-Interview. http://www.euractiv.com/science-policymaking/chief-eu-scientist-backs-damning-news-530693. Accessed on 16 Feb 2016
- Hanania U, Ariel T, Tekoah Y, Fux L, Sheva M, Gubbay Y, Weiss M, Oz D, Azulay Y, Turbovski A, Forster Y, Shaaltiel Y (2017) Establishment of a tobacco BY2 cell line devoid of plant specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 15:1120-1129 https://doi.org/10.1111/pbi.12702
- Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742-752 https://doi.org/10.1111/tpj.12413
- Heap B (2013) Europe should rethink its stance on GM crops. Nature 498:409 https://doi.org/10.1038/498409a
- Hilscher J, Burstmayr H, Stoger E (2017) Targeted modification of plant genomes for precision crop breeding. Biotechnol J 12:1-4 DOI :10.1002/biot.201600173
- Hu X, Meng X, Liu Q, Li J, Wang K (2018). Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16:292-297 doi :10.1111/pbi.12771
- Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241:271-284 https://doi.org/10.1007/s00425-014-2180-5
- Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205-219 https://doi.org/10.1007/s11103-005-2162-x
- Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the IAP gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429-5433. doi :10.1128/jb.169.12.5429-5433.1987
- Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985 doi :10.3389/fpls.2018.00985
- Jansen, R, Embden JDV, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565-1575 doi :10.1046/j.1365-2958.2002.02839.x
- Jia H, Zhang Y, Orbovic V, Xu, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817-823 https://doi.org/10.1111/pbi.12677
- Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41: e188. doi : 10.1093/nar/gkt780
- Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648-657 https://doi.org/10.1111/pbi.12663
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821 doi :10.1126/science.1225829
- Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648-651 https://doi.org/10.1126/science.1144956
- Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156-1160 https://doi.org/10.1073/pnas.93.3.1156
- Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2016) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406, doi : 10.1038/ncomms14406
- Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide based site-specific modification of the tobacco acetolactate syntase gene. Plant Physiol 132:174-184 https://doi.org/10.1104/pp.102.016857
- Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struc Bio 11:39-46 https://doi.org/10.1016/S0959-440X(00)00167-6
- Lee HJ, Kim E, Kim JS (2010a) Targeted chromosomal deletions in human cells using zinc finger nucleases. Gen Res 20:81-89 https://doi.org/10.1101/gr.099747.109
- Lee JH, Muhsin M, Atienza GA, Kwak DY, Kim SM, De Leon TB, Angeles ER, Coloquio E, Kondoh H, Satoh K, Cabunagan RC, Cabauatan PQ, Kikuchi S, Leung H, Choi IR (2010b) Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to rice tungro spherical virus. Mol Plant-Microbe Interact 23:29-38 https://doi.org/10.1094/MPMI-23-1-0029
- Lee HJ, Kweon J, Kim E, Kim SJ, Kim JS (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Gen Res 22:539-548 https://doi.org/10.1101/gr.129635.111
- Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus infection. Curr Biol 12:1046-1051 https://doi.org/10.1016/S0960-9822(02)00898-9
- Li T, Liu B, Spalding MH, Weeks DP Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392 https://doi.org/10.1038/nbt.2199
- Li X, Wang Y, Chen S, Tian H, Fu D, Zhu B, Luo Y, Zhu H (2018a) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559-571 doi :10.3389/fpls.2018.00559
- Li R, Li R, Li X, Fu D, Zhu B, Tian H, Luo Y, Zhu H (2018b) Multiplexed CRISPR/Cas9-mediated metabolic engineering of c-aminobutyric acid levels in Solanum lycopersicum. Plant Biotech J 16:415-427 https://doi.org/10.1111/pbi.12781
- Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Stadler T, Li J, Ye Z, Du Y, Huang S, (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Gene 46:1220-1226 https://doi.org/10.1038/ng.3117
- Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechol J 1-10, doi :10.1111/pbi.12927
- Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Kanchiswamy CN (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904-1913 doi :10.3389/fpls.2016.01904
- Matsumura KMAT (2010) Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference. Plant Biotechnol J 9:264-281
- Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216-3226 https://doi.org/10.1038/sj.emboj.7601750
- Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174-182 doi: 10.1007/s00239-004-0046-3
- Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 https://doi.org/10.1126/science.1178817
- Muller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C (2016) Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 24:636-644 doi : 10.1038/mt.2015.218
- Okuzaki A, Toriyama K (2004) Chimeric RNA/DNA oligonucleotide directed gene targeting in rice. Plant Cell Rep 22:509-512 https://doi.org/10.1007/s00299-003-0698-2
- Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus https://doi.org/10.1016/j.plaphy.2018.04.025
- Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389-400 doi : 10.1093/pcp/pcu170
- Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Rep 6:26685 DOI :10.1038/srep26685
- Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods 8:765-U115 https://doi.org/10.1038/nmeth.1670
- Pauwels K, Podevin N, Breyer D, Carroll D, Herman P (2014) Engineering nucleases for gene targeting: safety and regulatory considerations. Nat Biotechnol 31:18-27 doi :10.1016/j.nbt.2013.07.001
- Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509-1519 https://doi.org/10.1111/pbi.12733
- Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629-637 https://doi.org/10.1387/ijdb.130194hp
- Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276-1288 https://doi.org/10.1111/mpp.12417
- Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186-191 doi :10.1038/nature14299
- Reynard GB (1961) New source of the j2 gene governing jointless pedicel in tomato. Science 134:2102
- Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267-382
- Robinson RW (1980) Pleiotropic effects of the j-2 gene. TGC Report 30:32
-
Romer P, Hahn S, Jordan T, Strau
$\ss$ T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645-648 https://doi.org/10.1126/science.1144958 - Rodriguez-Leal D, Zachary H. Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470-480 https://doi.org/10.1016/j.cell.2017.08.030
- SAnchez-Leon S, Gil-Humanes J, Ozuna CV, Gimenez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902-910 https://doi.org/10.1111/pbi.12837
- Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 579:1167-1171 https://doi.org/10.1016/j.febslet.2004.12.086
- Sauer NJ, NarvAez-VAsquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schopke CR, Gocal FFW (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in Plants. Plant Physiol 170:1917-1928 https://doi.org/10.1104/pp.15.01696
- Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JH (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207-216 https://doi.org/10.1111/pbi.12603
- Shibuya K, Watanabeb K, Ono M (2018) CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiol Biochem https://doi.org/10.1016/j.plaphy.2018.04.036
- Shimatania Z, Fujikuraa U, Ishiia H, Matsui Y, Suzuki M, Ueke Y, Taoka K, Terada R, Nishida K, Kondo A (2018) Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol Biochem https://doi.org/10.1016/j.plaphy.2018.04.028
- Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Sohee Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports 6:27810 DOI :10.1038/srep27810
- Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441 https://doi.org/10.1038/nature07992
- Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A, Jiang K, Ramos A, van der Knaap E, Eck JV, Zamir D, Eshed Y, Lippman ZB (2017a) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169:1142-1155 https://doi.org/10.1016/j.cell.2017.04.032
- Soyk S, Muller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Eck JV, Jimenez-Gomez JM, Zachary B Lippman ZB (2017b) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162-170 https://doi.org/10.1038/ng.3733
- Steinert J, Schim S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35:1429-1435 https://doi.org/10.1007/s00299-016-1981-3
- Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase Mol Plant 9:628-631 https://doi.org/10.1016/j.molp.2016.01.001
- Sun YW, Jiao GA, Liu ZP, Zhang X, Li JY, Guo XP, Du WM, Du JL, Francis F, Zhao YD, Xia LQ (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298-313 doi :10.3389/fpls.2017.00298
- Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2014a) Knockout mice created by TALEN mediated gene targeting. Nat Biotechnol 31:23-24
- Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, SJ, Kim CH, Lee HW, Kim JS (2014b) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases 24:125-131 https://doi.org/10.1101/gr.163394.113
- Swiss National Science Foundation (2012) Benefits and risks of the deliberate release of genetically modified plants. National Research Programme NRP 59. http://www.nfp59.ch/e_index.cfm. Accessed on 16 Feb 2016
- Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y (2015) Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol J 13:1199-1208 https://doi.org/10.1111/pbi.12428
- Tieman D, Zhu G, Resende Jr. MFR, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H (2017) A chemical genetic roadmap to improved tomato flavor. Science 355: 391-394 https://doi.org/10.1126/science.aal1556
- Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports 7:507-515 DOI :10.1038/s41598-017-00501-4
- Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293 https://doi.org/10.1038/nature.2016.19754
- Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947-951 https://doi.org/10.1038/nbt.2969
- Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11: e0154027. doi :10.1371/journal.pone.0154027
- Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Ono M (2017) CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Reports 7:10028-10037 DOI :10.1038/s41598-017-10715-1
- Wittmann S, Chatel H, Fortin MG, Laliberte J-F (1997) Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two hybrid system. Virology 234:84-92 https://doi.org/10.1006/viro.1997.8634
- Woo JW, Kim J, Kwon SI, CorvalAn C, Cho SW, Kim H, Kim SG, Kim ST, Choe SH, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162-1165 https://doi.org/10.1038/nbt.3389
- Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q, Asmutola P (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate longshelf life tomato lines. Scientific Reports 7:11874-11873, DOI :10.1038/s41598-017-12262-1
- Zaidi SS, Mahfouz MM, Mansoor S (2017). CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550-553 doi : 10.1016/j.tplants.2017.05.001
- Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided 624 endonuclease of a class 2 CRISPR-Cas system. Cell 163:759-771 https://doi.org/10.1016/j.cell.2015.09.038
- Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F. et al. (2017) Multiplex gene editing by CRISPRCpf1 using a single crRNA array. Nat Biotechnol 35:31-34 doi :10.1038/nbt.3737
- Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16:1415-1423, doi :10.1111/pbi.12881
- Zhou H, He, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C (2016) Development of commercial thermosensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports 6:37395, DOI :10.1038/srep37395
- Zhu T, Peterson DJ, Tagliani L, St. Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Nat Acad Sci USA 96:8768-8773 https://doi.org/10.1073/pnas.96.15.8768
- Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555-558 https://doi.org/10.1038/75435