References
- Alart, P. and Curnier, A. (1991), "A mixed formulation for frictional contact problems prone to Newton like solution methods", Comput. Meth. Appl. Mech. Eng., 92, 353-375. https://doi.org/10.1016/0045-7825(91)90022-X
- Baillet, L. and Sassi, T. (2005), "Mixed finite element formulation in large deformation frictional contact problem", Revue Eur. des E lem. Fin., 14(2-3), 287-304.
- Bonet, J. and Wood. R.D. (2008), Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd Edition, Cambridge.
- Burman, E., Hansbo, P. and Larson, M.G. (2017), Augmented Lagrangian and Galerkin Least Squares Methods for Membrane Contact, arXiv: 1711.04494.
- Bussetta, P., Marceau, D. and Ponthot, J.P. (2012), "The adapted augmented Lagrangian method: A new method for the resolution of the mechanical frictional contact problem", Comput. Mech., 49(2), 259-275. https://doi.org/10.1007/s00466-011-0644-z
- Chouly, F., Mlika, R. and Renard, Y. (2018), "An unbiased Nitsche's approximation of the frictional contact between two elastic structures", Numer. Mathemat., 139(3), 593-631. https://doi.org/10.1007/s00211-018-0950-x
- De Saxce, G. and Feng, Z.Q. (1998), "The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms", Math. Comput. Modell., 28(4-8), 225-245. https://doi.org/10.1016/S0895-7177(98)00119-8
- Fischer, K.A. and Wriggers, P. (2006), "Mortar based frictional contact formulation for higher order interpolations using the moving friction cone", Comput. Meth. Appl. Mech. Eng., 195, 5020-5036. https://doi.org/10.1016/j.cma.2005.09.025
- Galvez, J., Cardona, A., Cavalieri, F. and Bruls, O. (2017), "An augmented Lagrangian frictional contact formulation for nonsmooth multibody systems", Proceedings of the ENOC 2017, Budapest, Hungary.
- Gholami, F., Nasri, M., Kovecses, J. and Teichmann, M. (2016), "A linear complementarity formulation for contact problems with regularized friction", Mech. Mach. Theory, 105, 568-582. https://doi.org/10.1016/j.mechmachtheory.2016.07.016
- Gu, Q., Barbato, M. and Conte, J.P. (2009), "Handling of constraints in finite-element response sensitivity analysis", ASCE J. Eng. Mech., 135(12), 1427-1438. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000053
- Hild, P. and Renard, Y. (2010), "A stabilized lagrange multiplier method for the finite element approximation of contact problems in elastostatics", Numer. Math., 115, 101-129.
- Ibrahimbegovic A. and Wilson, E.L. (1991), "Unified computational model for static and dynamic frictional contact analysis", Int. J. Numer. Meth. Eng., 34, 233-247.
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer.
- Laursen, T.A. and Simo, J.C. (1993a), "Algorithmic symmetrization of coulomb frictional problems using augmented Lagrangians", Comput. Meth. Appl. Mech. Eng., 108(1-2), 133-146. https://doi.org/10.1016/0045-7825(93)90157-S
- Laursen, T.A. and Simo J.C. (1993b), "A continuum-based finite element formulation for the implicit solution of multibody, large-deformation frictional contact problems", Int. J. Numer. Meth. Eng., 36(20), 3451-3485. https://doi.org/10.1002/nme.1620362005
- McDevitt, T.W. and Laursen, T.A. (2000), "A mortar-finite element formulation for frictional contact problems", Int. J. Numer. Meth. Eng., 48, 1525-1547. https://doi.org/10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y
- Masud, A., Truster, T.J. and Bergman, L.A. (2012), "A unified formulation for interface coupling and frictional contact modeling with embedded error estimation," Int. J. Numer. Meth. Eng., 92(2), 141-177. https://doi.org/10.1002/nme.4326
- Mlika, R., Renard, Y. and Chouly, F. (2017), "An unbiased Nitsche's formulation of large deformation frictional contact and self-contact", Comput. Meth. Appl. Mech. Eng., 325, 265-288.
- Pietrzak, G. and Curnier, A. (1999), "Large-deformation frictional contact mechanics: Continuum formulation and augmented Lagrangian treatment", Comput. Meth. Appl. Mech. Eng., 177(3-4), 351-381. https://doi.org/10.1016/S0045-7825(98)00388-0
- Popp, A., Wohlmuth, B.I., Gee, M.W. and Wall, W.A. (2012), "Dual quadratic mortar finite element methods for 3D finite deformation contact", SIAM J. Sci. Comput., 34(4), B421-B446. https://doi.org/10.1137/110848190
- Puso, M.A. and Laursen, T.A. (2004), "A mortar segment-to-segment contact method for large deformation solid mechanics", Comput. Meth. Appl. Mech. Eng., 193, 601-629. https://doi.org/10.1016/j.cma.2003.10.010
- Sheng, D., Wriggers, P. and Sloan, S.W. (2006), "Improved numerical algorithms for frictional contact in pile penetration analysis", Comput. Geotech., 33(6-7), 341-354. https://doi.org/10.1016/j.compgeo.2006.06.001
- Sheng, D., Wriggers, P. and Sloan, S.W. (2007), "Application of frictional contact in geotechnical engineering", Int. J. Geomech., 7(3), 176-185. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:3(176)
- Sheng. D., Yamamoto, H. and Wriggers, P. (2008), "Finite element analysis of enlarged end piles using frictional contact", Soils Foundat. Jap. Geotech. Soc., 48(1), 1-14. https://doi.org/10.3208/sandf.48.1
- Simo, J.C., Taylor, R.L. and Pister, K.S. (1985), "Variational and projection methods for the volume constraint in finite-deformation elasto-plasticity", Comput. Meth. Appl. Mech. Eng., 51, 177-208. https://doi.org/10.1016/0045-7825(85)90033-7
- Simo, J.C. and Laursen, T.A. (1992), "An augmented Lagrangian treatment of contact problems involving friction", Comput. Struct., 42(1), 97-116. https://doi.org/10.1016/0045-7949(92)90540-G
- Stefancu, A.I., Melenciuc, S.C. and Budescu, M. (2011), "Penalty based algorithms for frictional contact problems", Bullet. Polytech. Inst. Iasi-Constr. Architect., 61(3), 119.
- Terfaya, N., Berga, A. and Raous, M. (2015), "A bipotential method coupling contact, friction and adhesion", Int. Rev. Mech. Eng., 9(4).
- Vulovic, S., Zivkovic, M., Grujovic, N. and Slavkovic, R. (2007), "A comparative study of contact problems solution based on the penalty and lagrange multiplier approaches", J. Serb. Soc. Comput. Mech., 1(1), 174-183.
- Wriggers, P. (2006), Computational Contact Mechanics, 2nd Edition, Springer.
- Wriggers, P. and Zavarise, G. (1993), "On the application of augmented Lagrangian techniques for nonlinear constitutive laws in contact interfaces," Commun. Numer. Meth. Eng., 9(10), 815-824. https://doi.org/10.1002/cnm.1640091005