DOI QR코드

DOI QR Code

Comparison of chlorpyrifos resistance in Culex pipiens pipiens (Diptera: Culicidae) collected from Northern and Southern Tunisia

  • DAABOUB, Jabeur (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir) ;
  • TABBABI, Ahmed (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir) ;
  • BEN CHEIKH, Raja (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir) ;
  • LAAMARI, Ali (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir) ;
  • FERIANI, Mohamed (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir) ;
  • BOUBAKER, Chokri (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir) ;
  • BEN JHA, Ibtissem (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir) ;
  • BEN CHEIKH, Hassen (Laboratory of Genetics, Faculty of Medicine of Monastir, University of Monastir)
  • 투고 : 2018.01.18
  • 심사 : 2018.05.25
  • 발행 : 2018.09.29

초록

In this study, we investigated resistance to the organophosphates chlorpyrifos in Tunisian populations of Culex pipiens pipiens. Three field populations were collected from Northern and central Tunisia between 2003 and 2005 and used for the bioassays tests. Our results registered moderate and high levels of resistance to chlorpyrifos which ranged from 33.8 to 111. The chlorpyrifos resistant populations were highly resistant to propoxur indicated an insensitive acetylcholinesterase 1 (AChE 1). The highest frequency of AChE 1 resistant phenotypes (64%) was recorded in the most resistant population (sample # 1). Bioassays conducted in the presence of synergists showed that not esterases were involved as the resistance mechanism to chlorpyrifos. However, CYP450 was partly involved in the resistance of the most resistant sample (# 1). Starch electrophoresis showed that three esterases were present in studied samples: A2-B2, A4-B4 and B12. Results are discussed in relation to the selection pressure caused by insecticide treatments.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Higher Education and Scientific Research of Tunisia

참고문헌

  1. Ben Cheikh R, Berticat C, Berthomieu A et al. (2008) Characterization of a novel high-activity esterase in Tunisian populations of Culex pipiens. Journal of Economic Entomology 101: 481-491.
  2. Ben Cheikh H, Marrakchi M, Pasteur N (1995) Mise en evidence d'une tres forte resistance au chlorpyrifos et a la permethrine chez les moustiques Culex pipiens de Tunisie. Archives de l'Institut Pasteur de Tunis 72: 7-12.
  3. Ben Cheikh H, Haouas-Ben Ali Z, Marquine M et al. (1998) Resistance to organophosphorus and pyrethroid insecticides in Culex pipiens (Diptera: Culicidae) from Tunisia. Journal of Medical Entomology 35: 251-260. https://doi.org/10.1093/jmedent/35.3.251
  4. Berticat C, Boquien G, Raymond M et al. (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genetical Research 83: 189-196.
  5. Bourguet D, Pasteur N, Bisset J et al. (1996) Determination of ace1 genotypes in single mosquitoes: toward an ecumenical biochemical test. Pesticide Biochemistry and Physiology 55: 122-128. https://doi.org/10.1006/pest.1996.0041
  6. Bisset JA, Rodriguez MM, Diaz C et al. (1999) Characterization of resistance to organophosphate insecticides, carbamates, and pyrethroids in Culex quinquefasciatus from the state of Miranda, Venezuela. Revista Cubana de Medicina Tropical 51: 89-94.
  7. Brunhes J, Rhaim A, Geoffroy B et al. (1999) Les moustiques de l'Afrique mediterraneenne CD-ROM d'identification et d'enseignement. Edition IRD, Montpellier, France.
  8. Corbel V, N'Guessan R (2013) Distribution, Mechanisms, Impact and Management of Insecticide Resistance in Malaria Vectors: A Pragmatic Review. In: Anopheles mosquitoes - New insights into malaria vectors. https://doi.org/10.5772/3392.
  9. Daaboub J, Tabbabi A, Lamari A et al. (2017) Evaluation of Chlorpyrifos Resistance and Biochemical Mechanisms of Culex pipiens in Five Localities of Grand Tunis Area, Northeast Tunisia. Hereditary Genet 6: 183.
  10. Daaboub J, Ben Cheikh R, Lamari A et al. (2008) Resistance to pyrethroid insecticides in Culex pipiens pipiens (Diptera: Culicidae) from Tunisia. Acta Tropica 107: 30-36. https://doi.org/10.1016/j.actatropica.2008.04.014
  11. Davidson G (1957) insecticide resistance in Anopheles sundaicus. Nature 180: 1333-1335. https://doi.org/10.1038/1801333a0
  12. Diabate A (2003) Le Paludisme au Burkina Faso (Etude de la Transmission et Repartition Geographique de la Resistance d'Anopheles gambiae SL aux Pyrethrinoides. PhD diss., Universite des Sciences et Techniques de Montpellier.
  13. Diabate A, Baldet T, Chandre F et al. (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. The American Journal of Tropical Medicine and Hygiene 67: 617-622. https://doi.org/10.4269/ajtmh.2002.67.617
  14. Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge.
  15. Fonseca-Gonzalez I, Cardenas R, Quinones ML et al. (2009) Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldon populations from malaria endemic areas in Colombia. Parasitology Research 105: 1399-1409. https://doi.org/10.1007/s00436-009-1570-2
  16. Georghiou GP, Metcalf RL, Gidden FE (1966) Carbamate resistance in mosquitoes. Selection of Culex pipiens fatigans Wied for resistance to Baygon. Bull Word Health Organ 35: 691-708.
  17. Hemingway J, Penilla RP, Rodriguez AD et al. (1997) Resistance management strategies in malaria vector mosquito control. A largescale field trial in Southern Mexico. Pesticide Science 51: 375-382. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<375::AID-PS636>3.0.CO;2-K
  18. Labbe P, Alout H, Djogbenou L et al. (2011) Evolution of resistance to insecticide in disease vectors. In: Tibayrenc M (ed) Genetics and Evolution on Infectious Diseases, pp 363-409. Elsevier Publishing Compagny, London, UK.
  19. Labbe P, Berthomieu A, Berticat C et al. (2007) Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. Molecular Biology and Evolution 24: 1056-1067. https://doi.org/10.1093/molbev/msm025
  20. Lucas J (2014) Where will the next vector control insecticides come from? Outlooks Pest Manag 25: 150-151. https://doi.org/10.1564/v25_apr_01
  21. Pasteur N, Pasteur G, Catalan J et al. (1988) Practical isozyme genetics. Ellis. Ho Horwood, Chichester, United Kingdom.
  22. Perera MD, Hemingway J, Karunaratne SP (2008) Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malaria Journal 7: 168. https://doi.org/10.1186/1475-2875-7-168
  23. Raffa KF, Priester MT (1985) Synergists as research tools and control agents in agriculture. Journal of Agricultural Entomology 2: 27-140.
  24. Raymond M, Heckel D, Scott JG (1989) The interaction between pesticide genes. Model and experiment. Genetics 123: 543-551.
  25. Raymond M, Fournier D, Bride JM et al. (1986) Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: insensitive acetylchlinesterase and detoxifying oxidases. Journal of Economic Entomology 79: 1452-1458. https://doi.org/10.1093/jee/79.6.1452
  26. Raymond M, Prato G, Ratsira D (1993) PROBIT. Analysis of Mortality assays displaying quantal response. Praxeme (Licence No. L93019), Saint Georges d'Orques, France.
  27. Reid MC, McKenzie FE (2016) The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malaria Journal 15: 107. https://doi.org/10.1186/s12936-016-1162-4
  28. Tabbabi A, Daaboub J, Laamari A et al. (2017) Pirimiphos-Methyl Resistance Status of Field Populations of Culex pipiens (Diptera: Culicidae) From Grand Tunis Area, Northeast Tunisia. Hereditary Genetics 6: 175.
  29. Surendran SN, Jude PJ, Weerarathne TC et al. (2012) Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka. Parasites & Vectors 5: 34. https://doi.org/10.1186/1756-3305-5-34
  30. Yebakima A, Marquine M, Rosine J et al. (2004) Evolution of resistance under insecticide selection pressure in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Martinique. Journal of Medical Entomology 41: 718-725. https://doi.org/10.1603/0022-2585-41.4.718