DOI QR코드

DOI QR Code

Effects of Foam Roller Application and Movement on EMG responses of Trunk and Lower Limb muscles in Pilates

필라테스 동작시 폼롤러의 적용과 움직임에 따른 몸통근과 하지근의 근전도 반응에 미치는 영향

  • 정서현 (단국대학교 스포츠과학대학) ;
  • 조상우 (호서대학교 스포츠과학부) ;
  • 정상훈 (단국대학교 스포츠과학대학) ;
  • 김기홍 (단국대학교 스포츠과학대학)
  • Received : 2018.08.21
  • Accepted : 2018.09.22
  • Published : 2018.09.30

Abstract

The purpose of this study is to investigate the difference of muscle activity according to application of a foam roller during pilates. The 8 male subjects were selected and quadruped position, bridge, and core control movement of pilates were randomly assigned to 9 movements on a static mat motion, static foam-roller motion, and dynamic foam-roller actions. This program was conducted once at intervals of 1 week. The muscle activity of erector spinae, rectus abdominis, external oblique, gluteus medius, rectus femoris, and biceps femoris were measured and the collected data was analyzed by one-way ANOVA. First, in the quadruped, the rectus abdominis and external oblique, rectus femoris of the dynamic foam-roller actions showed higher muscle activity than the static mat motion and the static foam-roller motion(p <.001), gluteus medius muscle activity was also significantly higher (p <.05). biceps femoris were significantly higher in static foam-roller motions than in static mat-motion and dynamic foam-roller actions(p <.05). Second, biceps femoris muscle activity was highest in dynamic foam-roller actions than static mat-motion and static foam-roller motions during bridge(p <.001). Third, in the sitting core control, the rectus abdominis and gluteus medius of the dynamic foam-roller actions showed higher muscle activity than the static mat motion and the static foam-roller motion(p <.001). and activity of erector spinae muscle was also significantly higher (p <.01). external oblique were significantly higher in static mat-motion than in static foam-roller motions and dynamic foam-roller actions(p <.05). Considering the muscle activity during pilates exercise, it would be more effective to apply the method and difficulty.

본 연구는 필라테스 동작 시 폼롤러의 적용과 움직임에 따른 몸통과 하지의 근활성도 차이를 알아보는 것이 목적이다. 피험자로 남자 8명을 선정하여 필라테스 네발자세, 교각자세, 코어컨트롤 동작을 매트위에서 정적동작, 폼롤러 위에서 정적동작, 폼롤러 위에서 동적동작으로 무선배정하여 1주 간격으로 수행하였다. 각 동작의 수행 시 척추세움근, 배곧은근, 배바깥빗근, 중간볼기근, 넙다리두갈래근과 넙다리곧은근의 근활성도를 측정하여 일원분산분석으로 분석하였다. 유의수준은 ${\alpha}=.05$로 설정하였다. 첫째, 네발기기 동작에서 폼롤러 동적동작에서는 배곧은근, 배바깥빗근, 중간볼기근, 넙다리두갈래근의 근활성도가 높게 나타났으며(p<.001)(p<.05), 폼롤러 정적동작에서는 넙다리곧은근의 근활성도가 높게 나타났다(p<.001). 둘째, 교각자세 동작에서 폼롤러 동적동작에서는 넙다리두갈래근의 근활성도가 높게 나타났다(p<.001). 셋째, 코어컨트롤 동작에서 폼롤러 동적 동작에서는 배곧은근, 척추세움근, 중간볼기근의 근활성도가 높게 나타났으며(p<.001)(p<.01), 정적 동작에서는 배바깥빗근의 근활성도가 높게 나타났다(p<.05). 필라테스 운동시 근활성도를 고려하여 방법과 난이도를 적용하면 더욱더 효과적일 것이라 사료된다.

Keywords

References

  1. H. S. Choi, O. Y. Kwon, C. H. Yi, H. S. Jeon, & J. S. Oh, "The Comparision of Trunk Muscle Activities During Sling and Mat Exercise", Journal of Korean Physical Therapy, Vol.12, No.1 pp. 1-10, (2005).
  2. N. P. Reeves, & J. Cholewicki, "Modeling the human lumbar spine for assessing spinal loads, stability, and risk of injury", Critical Reviews in Biomedical Engineering, Vol.31, No.1-2 pp.73-139, (2003).
  3. S. H. An, "The therapeutic approach of Chronic back pain", Journal of Coaching Development, Vol.7, No.3 pp.3-13, (2005).
  4. J. Patrick, J. S. Culligan, D. Keisha, L. Jnnifer, G. G. Priestly, D. Donna, & V. Margi, "A randomized clinical trial comparing pelvic floor muscle training to Pilates exercise program for improving pelvic muscle strength", International neurogynecology journal, Vol.21, No.4 pp.401-408, (2010). https://doi.org/10.1007/s00192-009-1046-z
  5. J. H. Lee, H. Y. Lee, & K. T. Yoo, "Effect of Pilates Mat Exercise Program to Pelvis and Spine Angle of the 20's Woman", Journal of the Korea Entertainment Industry Association, Vol.8, No.3 pp.399-405, (2014). https://doi.org/10.21184/jkeia.2014.09.8.3.399
  6. J. H. Kallander, & M. S. Park, "A Qualitative Approach to the Effects of Pilates Exercise", Korean journal of physical education, Vol.43, No.5 pp.791-803, (2004).
  7. J. Kloubec, "Pilates: how does it work and who needs it?", Muscles Ligaments Tendons J, Vol.1, No.2 pp.61-66, (2011).
  8. M. J. Kim, "Effect of Bridging Stabilization Exercises on Trunk Muscles Activity on and Off a Swiss Ball", Journal of Korean Society of Physical Therapy, Vol.16, No.1 pp.18-24, (2009).
  9. M. J. Yun, J. Y. Byon, H. J. Kim, & K. J. Kim, "Effects of 12-week Pilates and Complex Exercises on Female Farm Workers of Cumulative Trauma Disorders", KINESIOLOGY, Vol.13, No.3 pp.13-22, (2011).
  10. G, Lehman, W. Hoda, S. Oliver, "Trunk muscle activity during bridging exercises on and off a Swiss ball", Chiropr Osteopat, Vol.13, No.7 pp. 1-8, (2005). https://doi.org/10.1186/1746-1340-13-1
  11. C. Kisner, L. Colby, Therapeutic exercise: foundations and techniques. FA. Davis Co, (2007).
  12. S. B. O'Sullivan, T. J. Schmitz, Physical Rehabilitation : Assesment and treatment. Davis company, (2001).
  13. P. B. O'Sullivan, L. T. Twomey, G. T. Allison, "Evaluation of specific stabilizing exercise in the treatment of chronic low back pain with radiologic diagnosis of spondylolysis or spondylolisthesis", Spine, Vol.22, No.24 pp.2959-2967, (1997). https://doi.org/10.1097/00007632-199712150-00020
  14. J. P. Arokoski, T. Valta, O. Airaksinen, M. Kankaanpaa, "Back and abdominal muscle function during stabilization exercises", Arch Phys Med Rehabil, Vol.82, No.8 pp.1089-1098, (2001). https://doi.org/10.1053/apmr.2001.23819
  15. B. O. Goo, Y. H. Jung, & S. M. Kim, "The Effect of Trunk Muscles Activity on the Unstable Surface during Stabilization Exercises in Four-point Kneeling", J. of the Korean Proprioceptive Neuromuscular Facilitation Association, Vol.9, No.3 pp.1-9, (2011).
  16. J. H. Kang, & J. H. Shim, "Comparison of Trunk Muscles Thickness in Three Different Bridge Exercises by Ultrasound Fusion Imaging", Journal of the Korea Convergence Society, Vol.6, No.5 pp.123-130, (2015). https://doi.org/10.15207/JKCS.2015.6.5.123
  17. M. J. Kim, & W. J. Lee, "The Effect of a Swiss Ball and Lower Limb Resistance Exercise on Trunk Muscle Activity during Bridging Stabilization Exercises", Journal of KSSPT, Vol.8, No.1 pp.1-7, (2012).
  18. H. S. Kim, W. S. Bae, & K. C. Lee, "Comparison of the Abdominal Muscle Thickness and Activity by Using Tool and Unstable Surface which is Accompanied Bridge Exercise Doing Abdominal Drawing-in Breath", Journal of Korean Society of Integrative Medicine, Vol.5, No.1 pp.25-24, (2017). https://doi.org/10.15268/KSIM.2017.5.1.025
  19. M. Y. Eom, J. G. Hur, S. H. Chung, C. S. Park, & S. Y. Lee, "Effect of Support Surface Difference in Bridging Exercise on Thickness of Transverse Abdominis", J Korean Acad Ther, Vol.4, No.2 pp.102-110, (2012).
  20. K. S. Lee, & J. W. Jo, "The Differences of Trunk Muscle Activity According to Task Difficulty in Four Point Kneeling Position", Journal of Korea Society for Neurotheapy, Vol.20, No.3 pp.33-38, (2016).
  21. T. Moritani, M. Muro, A. Nagata, "Intramuscular and surface electromyogram changes during muscle fatigue", Journal of Applied Physiology, Vol.60, No.4 pp.1179-1185, (1986). https://doi.org/10.1152/jappl.1986.60.4.1179
  22. E. L. Fox, R. W. Bowers, M. L. Foss, The physiological basis of physical education and athletics, William C Brown Pub, (1981).
  23. K. H. Kim, & J. P. Yom, "The Effects of Three Different Squat Exercises on iEMG, MEF of Rectus femoris, Biceps femoris and Gastrocnemius", KINESIOLOGY, Vol.17, No.1 pp.1-8, (2015).
  24. M. Lindh, "Increase of muscle strength from isometric quadriceps exercises at different knee angles", Scandinavian journal of rehabilitation medicine, Vol.11, No.1 pp.33-36, (1979).
  25. J. J. Knapik, J. E. Wright, R. H. Mawdsley, & J. Braun, "Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion", Physical therapy, Vol.63, No.6 pp.938-947, (1983). https://doi.org/10.1093/ptj/63.6.938
  26. A. B. Brown, N. McCartney, & D. G. Sale, "Positive adaptations to weight-lifting training in the elderly", Journal of applied physiology, Vol.69, No.5 pp.1725-1733, (1990). https://doi.org/10.1152/jappl.1990.69.5.1725
  27. R. Isacowitz, & K. Clippinger, Pilates anatomy. Human Kinetics, (2010).
  28. R. Merletti, P. A. Parker, & P. J. Parker, Electromyography: physiology, engineering, and non-invasive applications, John Wiley & Sons, (2004).
  29. J. Royce, "Isometric fatigue curves in human muscle with normal and occluded circulation. Research Quarterly", American Association for Health, Physical Education and Recreation, Vol.29, No.2 pp.204-212, (1958). https://doi.org/10.1080/10671188.1958.10612983
  30. W. J. Kraemer, N. A. Ratamess, & P. Komi, "Endocrine responses and adaptations to strength and power training", Strength and power in sport, Vol.2, pp.361-86, (2003).
  31. B. C. Queiroz, M. F. Cagliari, C. F. Amorim, & I. C. Sacco, "Muscle activation during four Pilates core stability exercises in quadruped position", Archives of physical medicine and rehabilitation, Vol.91, No.1 pp.86-92, (2010). https://doi.org/10.1016/j.apmr.2009.09.016
  32. J. M. Han, & K. S. Kim, "The change of muscle thickness in accordance with angle of shoulder joint and hip joint at the Quadrupedal position", Journal of the Korea Academia-Industrial cooperation Society, Vol.15, No.2 pp.934-939, (2014). https://doi.org/10.5762/KAIS.2014.15.2.934
  33. D. A. Neumann, Kinesiology of the musculoskeletal system: foundations for rehabilitation. Elsevier Health Sciences, (2013).
  34. P. W. Hodges, & C. A. Richardson, "Contraction of the abdominal muscles associated with movement of the lower limb", Physical therapy, Vol.77, No.2 pp.132-142, (1997). https://doi.org/10.1093/ptj/77.2.132
  35. I. A. Kapandji, The Physiology of the Joints. Elsevier Science, (2008).

Cited by

  1. 정상인의 팔걸이 사용에 따른 보행 시 하지 근 활성도의 변화 vol.27, pp.3, 2020, https://doi.org/10.26862/jkpts.2020.12.27.3.67