DOI QR코드

DOI QR Code

Influences of the BUN and Creatinine Level by Krill (Euphausia superba) Meal and NaF Administration in Rats

Krill 분말 및 NaF 투여가 흰쥐의 BUN 및 Creatinine 농도에 미치는 영향

  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • Received : 2018.08.15
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

The aim of this study was to investigate the hematology and serum chemistry values on Sprague-Dawley rats, used krill (Euphausia superba) meal diet and sodium fluoride (NaF) for 5 weeks. Seven-week-old male rats were divided into five groups and fed experimental diets containing three krill meal contents, administrated orally 10 mg of NaF, basal diet group (BG), basal diet plus 10 mg of NaF group (BFG), 10.0% krill meal plus 10 mg of NaF group (KMF10), 20.0% krill meal plus 10 mg of NaF group (KMF20), and 30.0% krill meal plus 10 mg of NaF group (KMF30). Concentrations of non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), creatinine in sera were significantly lower in the KMF10, KMF20, KMF30 than BFG (p<0.05). In uric acid concentration KMF10 showed no significant difference with the BFG group, was significantly lower than KMF20 and KMF30 (p<0.05). Total calcium (T-Ca) concentrations was all observed to be no significant difference, was increased with krill meal content (p<0.05). Phosphorus (Pi) concentration was no change in the content of krill meal. Accordingly, krill meal was considered to be effective in improving NEFA and BUN, creatinine, uric acid concentration.

Krill (Euphausia superba) 분말이 Sprague Dawley계 수컷 흰쥐 혈청 중 non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), creatinine, uric acid 및 전해질 농도에 미치는 영향을 조사하기 위하여 기본식이를 급여한 대조군인 BG군과 기본식이에 NaF 10 mg 경구 투여한 BFG군을 비롯하여 10%, 20%, 30%의 krill 분말을 첨가한 식이에 NaF 10 mg 경구 투여한 KMF10군, KMF20군, KMF30군, 5가지의 급여군으로 나누어 5주간 사육한 결과, 흰쥐의 NEFA와 BUN, creatinine 농도는 krill 분말 급여군인 KMF10군, KMF20군, KMF30군에서 BFG군보다 유의적으로 감소한 결과가 관찰되었으며, uric acid 농도에서 KMF10군은 BFG군과 유의적 차이가 없었으나, KMF20군과 KMF30군에서 유의적으로 감소하였다(p<0.05). 또한 전해질 농도에서 총 칼슘(T-Ca)은 군간의 유의적 차이가 없는 것으로 관찰되었지만 krill 분말 함량에 따라 증가하였으며(p<0.05), 인(Pi) 농도는 krill meal 함량에 따른 변화는 없는 것으로 나타났다. 따라서, krill 분말은 NEFA 및 BUN, creatinine, uric acid 농도 개선에 효과가 있을 것으로 사료된다.

Keywords

References

  1. S. A. Kang, K. H. Jang, K. H. Hong, W. A. Choi, K. H. Jung, I. Y. Lee, "Effects of dietary ${\beta}$-glucan on adiposity and serum lipids levels in obese rats induced by high fat diet", J. Korean Soc. Food Sci. Nutr., Vol.31, No.6 pp. 1052-1057, (2002). https://doi.org/10.3746/jkfn.2002.31.6.1052
  2. C. P. Wen, K. Matsushita, J. Coresh, K. Iseki, M. Islam, R. Katz, W. McClellan, C. A. Peralta, H. Y. Wang, D. Zeeuw, B. C. Astor, R. T. Gansevoort, A. S. Levey, A. Levin, "Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar", Kidney Int., Vol.86, No.4 pp. 819-827, (2014). https://doi.org/10.1038/ki.2013.553
  3. S. Yusuf, D. Wood, J. Ralston, K. S. Reddy, "The World Heart Federation's vision for worldwide cardiovascular disease prevention", The Lancet, Vol.386, No.9991 pp. 399-402, (2015). https://doi.org/10.1016/S0140-6736(15)60265-3
  4. M. Gil-Campos, M. C. Ramirez Tortosa, C. M. Aguilera, R. Canete, A. Gil, "Fasting and postprandial adiponectin alterations anticipate NEFA and TNF-${\alpha}$ changes in prepubertal obese children", Nutr. Metabolism Cardiovascular Diseases, Vol.21, No.1 pp. 62-68, (2011). https://doi.org/10.1016/j.numecd.2009.07.003
  5. D. Grapov, S. H. Adams, T. L. Pedersen, W. T. Garvey, J. W. Newman, "Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids", PloS one, Vol.7, No.11 pp. e48852-e48862, (2012). https://doi.org/10.1371/journal.pone.0048852
  6. T. Yasu, M. Kobayashi, A. Mutoh, K. Yamakawa, S. I. Momomura, S. Ueda, "Dihydropyridine calcium channel blockers inhibit non-esterified-fatty-acid-induced endothelial and rheological dysfunction", Clinical Sci., Vol.125, No.5 pp. 247-255, (2013). https://doi.org/10.1042/CS20120311
  7. A. Ziomber, A. Machnik, A. Dahlmann, P. Dietsch, F. X. Beck, H. Wagner, K. F. Hilgers, F. C. Luft, K. U. Eckardt, J. Titze, "Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats", American J, Physiology-Renal Physiol., Vol.295, No.6 pp. F1752-F1763, (2008). https://doi.org/10.1152/ajprenal.00531.2007
  8. T. Akimoto, C. Ito, M. Kato, M. Ogura, S. Muto, E. Kusano, "Reduced hydration status characterized by disproportionate elevation of blood urea nitrogen to serum creatinine among the patients with cerebral infarction", Med. Hypotheses, Vol.77, No.4 pp. 601-604, (2011). https://doi.org/10.1016/j.mehy.2011.06.044
  9. W. C. Lin, H. M. Shih, L. C. Lin, "Preliminary prospective study to assess the effect of early blood urea nitrogen/creatinine ratio-based hydration therapy on poststroke infection rate and length of stay in acute ischemic stroke", J. Stroke Cerebrovascular Diseases, Vol.24, No.12 pp. 2720-2727, (2015). https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.002
  10. J. W. Schrock, M. Glasenapp, K. Drogell, "Elevated blood urea nitrogen/creatinine ratio is associated with poor outcome in patients with ischemic stroke", Clinical Neurol. Neurosurgery, Vol.114, No.7 pp. 881-884, (2012). https://doi.org/10.1016/j.clineuro.2012.01.031
  11. S. C. Chen, J. M. Chang, S. M. Yeh, H. M. Su, H. C. Chen, "Association of uric acid and left ventricular mass index with renal outcomes in chronic kidney disease", American J. Hypertension, Vol.26, No.2 pp. 243-249, (2013). https://doi.org/10.1093/ajh/hps020
  12. M. Duran, E. Ornek, S. N. Murat, M. Turfan, M. A. Vatankulu, A. Ocak, C. Doger, A. A. Yalcin, M. B. Demircelik, "High levels of serum uric acid impair development of coronary collaterals in patients with acute coronary syndrome", Angiology, Vol.63, No.6 pp. 472-475, (2012). https://doi.org/10.1177/0003319711422433
  13. F. J. Nieto, C. Iribarren, M. D. Gross, G. W. Comstock, R. G. Cutler, "Uric acid and serum antioxidant capacity: a reaction to atherosclerosis?", Atherosclerosis, Vol.148, No.1 pp. 131-139, (2000). https://doi.org/10.1016/S0021-9150(99)00214-2
  14. D. Ghosh, S. Das, R. Maiti, D. Jana, U. B. Das, "Testicular toxicity in sodium fluoride treated rats: association with oxidative stress", Reproductive Toxicol., Vol.16, No.4 pp. 385-390, (2002). https://doi.org/10.1016/S0890-6238(02)00038-2
  15. Y. N. Wang, K. Q. Xiao, J. L. Liu, G. Dallner, Z. Z. Guan, "Effect of long term fluoride exposure on lipid composition in rat liver", Toxicology, Vol.146, No.2 pp. 161-169, (2000). https://doi.org/10.1016/S0300-483X(00)00167-0
  16. X. Xiong, J. Liu, W. He, T. Xia, P. He, X. Chen, K. Yang, A. Wang, "Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children", Environ. Res., Vol.103, No.1 pp. 112-116, (2007). https://doi.org/10.1016/j.envres.2006.05.008
  17. A. Clarke, "The biochemical composition of krill, Euphausia superba Dana, from Shouth Georgia", J. Experimental Marine Biol. Ecol., Vol.43, No.3 pp. 221-236, (1980). https://doi.org/10.1016/0022-0981(80)90049-0
  18. H. S. Kim, M. A. Kim, Y. Duan, D. S. Kang, S. H. Jang, J. Y. Ryu, C. S. Lee, W. K. Lee, "Studies on the nutritional components and amino acid compositions of krill (Euphausia superba)", J. Environ. Sci. Int., Vol.23, No.2 pp. 165-170, (2014). https://doi.org/10.5322/JESI.2014.23.2.165
  19. J. P. Schuchardt, I. Schneider, H. Meyer, J. Neubronner, C. Schacky, A. Hahn, "Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations-a comparative bioavailability study of fish oil vs. krill oil", Lipids Health Disease, Vol.10, No.1 pp. 145-151, (2011). https://doi.org/10.1186/1476-511X-10-145
  20. S. H. Goodnight, W. S. Harris, W. E. Connor, D. R. Illingworth, "Polyunsaturated fatty acids, hyperlipidemia, and thrombosis", Arteriosclerosis Thrombosis Vascular Biol., Vol.2, No.2 pp. 87-113, (1982). https://doi.org/10.1161/01.ATV.2.2.87
  21. R. J. Goldberg, J. Katz, "A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain", Pain, Vol.129, No.1 pp. 210-223, (2007). https://doi.org/10.1016/j.pain.2007.01.020
  22. P. M. Kris-Etherton, T. A. Pearson, Y. Wan, R. L. Hargrove, K. Moriarty, V. Fishell, T. D. Etherton, "High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations", American J. Clinic. Nnutr., Vol.70, No.6 pp. 1009-1015, (1999). https://doi.org/10.1093/ajcn/70.6.1009
  23. J. Schwartz, "Role of polyunsaturated fatty acids in lung disease", American J. Clinic. Nutr., Vol.71, No.1 pp. 393s-396s, (2000). https://doi.org/10.1093/ajcn/71.1.393s
  24. H. J. Park, K. S. Ham, D. M. Kim, K. H. Kim, "Decrease of fluoride content of antarctic krill", Korean J. Food Sci. Technol., Vol.20, No.1 pp. 19-22, (1988).
  25. S. K. Rhee, D. S. Kim, "The effective utilization techniques of krill resources in antarctic ocean as new protein food", J. Korean Professional Engineers Association, Vol.32, No.1 pp. 90-98, (1999).
  26. H. S. Kim, M. A. Kim, S. H. Jang, "Influences of Korean haw (Crataegus pinnatifida Bunge) on lipid concentration in hypercholesterolemia", J. Environ. Sci. Int., Vol.23, No.5 pp. 793-800, (2014). https://doi.org/10.5322/JESI.2014.5.793
  27. C. M. Aguilera, M. Gil-Campos, R. Canete, A. Gil, "Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome", Clinic. Sci., Vol.114, No.3 pp. 183-189, (2008). https://doi.org/10.1042/CS20070115
  28. C. Gayet, E. Bailhache, H. Dumon, L. Martin, B. Siliart, P. Nguyen, "Insulin resistance and changes in plasma concentration of TNF${\alpha}$, IGF1, and NEFA in dogs during weight gain and obesity", J. Animal Physiol. Animal Nutr., Vol.88, No.3-4 pp. 157-165, (2004). https://doi.org/10.1111/j.1439-0396.2003.00473.x
  29. B. H. Kang, H. Y. Son, C. S. Ha, H. S. Lee, "References values of hematology and serum chemistry in Ktc: Sprague-Dawley rats", Korean J. Lab. Animal Sci., Vol.11, No.2 pp. 141-145, (1995).
  30. D. Aronson, M. A. Mittleman, A. J. Burger, "Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure", American J. Med., Vol.116, No.7 pp. 466-473, (2004). https://doi.org/10.1016/j.amjmed.2003.11.014
  31. L. R. Narasimhan, W. Goodman, C. K. N. Patel, "Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis", Proceedings National Academy Sci., Vol.98, No.8 pp. 4617-4621, (2001). https://doi.org/10.1073/pnas.071057598
  32. X. Guo, Y. Qin, K. Zheng, M. Gong, J. Wu, W. Shou, X. Cheng, X. Liangyu, E. Xu, X. Li, L. Qiu, "Improved glomerular filtration rate estimation using new equations combined with standardized cystatin C and creatinine in chinese adult chronic kidney disease patients", Clinic. Biochem., Vol.47, No.13 pp. 1220-1226, (2014). https://doi.org/10.1016/j.clinbiochem.2014.05.060
  33. R. J. Johnson, D. H. Kang, D. Feig, S. Kivlighn, J. Kanellis, S. Watanabe, K. R. Tuttle, B. Rodriguez-Iturbe, J. Herrera-Acosta, M. Mazzali, "Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?", Hypertension, Vol.41, No.6 pp. 1183-1190, (2003). https://doi.org/10.1161/01.HYP.0000069700.62727.C5
  34. M. C. Odden, A. R. Amadu, E. Smit, L. Lo, C. A. Peralta, "Uric acid levels, kidney function, and cardiovascular mortality in US adults: National Health and Nutrition Examination Survey (NHANES) 1988-1994 and 1999-2002", American J. Kidney Diseases, Vol.64, No.4 pp. 550-557, (2014). https://doi.org/10.1053/j.ajkd.2014.04.024
  35. M. Volterrani, F. Iellamo, B. Sposato, F. Romeo, "Uric acid lowering therapy in cardiovascular diseases", Int. J. Cardiol., Vol.213, pp. 20-22, (2016). https://doi.org/10.1016/j.ijcard.2015.08.088
  36. E. Ritz, M. L. Gross, R. Dikow, "Role of calcium-phosphorous disorders in the progression of renal failure", Kidney Int., Vol.68, No.99 pp. S66-S70, (2005).