DOI QR코드

DOI QR Code

Reaction characteristics of hydrocarbon fuels under various operation conditions of hydro-upgrading process for vegetable oil-based bio-jet fuel production

식물성 오일 기반 바이오항공유 제조공정에서 수소첨가 업그레이딩을 위한 운전조건에 따른 탄화수소화합물의 특성

  • Kwak, Yeonsu (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Jang, Jung Hee (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Kim, Sungtak (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Ahn, Minhwei (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Lee, Eun-Sil (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Han, Gi Bo (Plant Engineering Division, Institute for Advanced Engineering (IAE)) ;
  • Jeong, Byung Hun (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Han, Jeong Sik (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Jeon, Cheol-Hwan (Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority)
  • 곽연수 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 장정희 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 김성탁 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 안민회 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 이은실 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 한기보 (플랜트엔지니어링본부, 고등기술연구원) ;
  • 정병훈 (제4기술연구본부, 국방과학연구소) ;
  • 한정식 (제4기술연구본부, 국방과학연구소) ;
  • 전철환 (한국석유관리원 석유기술연구소)
  • Received : 2018.07.26
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

In bio-jet fuel production, selecting operating conditions of hydro-upgrading is of great importance to make iso-Paraffin rich hydrocarbons with carbon distribution including jet fuel range. Herein, iso-Paraffin rich biofuel including jet fuel range hydrocarbons ($C_8-C_{16}$) is produced from simultaneous cracking and isomerization using n-Paraffin rich hydrocarbon derived from hydrotreated vegetable oil over 0.5 wt..% Pt/Zeolite catalyst. We report and analyze the yields and compositions in the produced hydrocarbons affected by various operating conditions, such as reaction temperature, reaction pressure, molar ratio of reactants, and weight hourly space velocity. Aforementioned operating conditions not only can help interpret the reaction dynamics of hydro-upgrading, but also further produce bio jet-fuel after distillation.

바이오항공유 제조 공정 내 수첨업그레이딩 공정의 운전조건 선정은 반응물로부터 얻고자 하는 주생성물인 탄화수소 화합물에 대하여 바이오항공유로서 원하는 탄소수 분포의 물성을 갖도록 하기위한 중요한 인자이다. 본 연구에서는 식물성 오일 유래 노말 파라핀계 탄화수소 화합물에 대한 수첨 업그레이딩 반응이 0.5 wt.% Pt/Zeolite 촉매 하에서 수행되었으며, 이를 통해 크래킹 반응과 이성질화 반응이 동반됨으로써 바이오항공유로서 물성을 갖는 탄소수 분포인 $C_8-C_{16}$에 해당하는 노말 파라핀계와 이소 파라핀계가 혼합된 탄화수소류 화합물이 제조되었다. 반응온도, 반응압력, 반응물 몰비와 공간속도를 변화하여 얻어진 생성물의 수율 및 조성을 분석하였다. 상기 공정 조건에 대한 정보는 수첨 업그레이딩 반응특성의 이해뿐 아니라 향후 증류를 통한 바이오항공유 제조에 도움을 줄 수 있다.

Keywords

References

  1. The International Air Transport Association, IATA Sustainable Aviation Fuel Roadmap, 1st Ed., pp.3-20, (2015).
  2. G. Liu, B. Yan, G. Chen, "Technical review on jet fuel production", Renewable and Sustainable Energy Reviews, Vol. 25, pp. 59-70, (2013). https://doi.org/10.1016/j.rser.2013.03.025
  3. W. Wang, L. Tao, "Bio-jet fuel conversion technologies", Renewable and Sustainable Energy Reviews, Vol.53 pp. 801-822, (2016). https://doi.org/10.1016/j.rser.2015.09.016
  4. J. Kim, J. Park, E. Yim, K. Min, C. Park, J. Ha, "Bio-jet Fuel Production Technologies for GHG reduction in Aviation Sector", Trans. of the Korean Hydrogen and New Energy Society, Vol 26, No. 6, pp. 609-628, (2015). https://doi.org/10.7316/KHNES.2015.26.6.609
  5. M. Ameen, M. Azizan, S. Yusup, A. Ramli, M. Yasir, "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production", Renewable and Sustainable Energy Reviews, Vol. 80, pp. 1072-1088, (2017). https://doi.org/10.1016/j.rser.2017.05.268
  6. International Renewable Energy Agency, Biofuels for Aviation: Technology Brief, pp. 5-7, (2017).
  7. M. Kim, J. Kim, M. Lee, S. Lee, M. Choi, "Maximizing Biojet Fuel Production from Triglyceride: Importance of the Hydrocracking Catalyst and Seperate Deoxygenation/Hydrocracking Steps", ACS catalysis, Vol. 7, pp. 6256-6267, (2017). https://doi.org/10.1021/acscatal.7b01326
  8. H. Deldari, "Suitable catalysts for hydroisomerization of long-chain normal paraffins", Applied Catalysis A: General, Vol. 293, pp. 1-10, (2005). https://doi.org/10.1016/j.apcata.2005.07.008
  9. E. Corporan, T. Edwards, L. Shafer, M. J. Dewitt, C. Klingshim, S. Zabamick, Z. West, R. Striebich, J. Graham, J. Klein, "Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels", Energy & Fuels, Vol.25, pp. 955-966, (2011). https://doi.org/10.1021/ef101520v
  10. H. Robota, J. Alger, L. Shafer, "Converting Algal Trigylcerides to Diesel and HEFA Jet Fuel Fractions", Energy & Fuels, Vol. 27, pp. 985-996, (2013). https://doi.org/10.1021/ef301977b
  11. ASTM D-5442-93 Standard Test Method for Analysis of Petroleum Waxes by Gas Chromatography, ASTM: West Conshohocken, PA, 2008.
  12. J. F. Denayer, G.V. Baron, W. S. Souverjins, J. A. Martens, and P. A. Jacobs, "Hydrocracking of n-Alkane Mixtures on Pt/H-Y Zeolite: Chain Length Dependence of the Adsorption and the Kinetic Constants", Ind. Eng. Chem. Res., Vol. 36, No.8, pp. 3242-3247, (1997). https://doi.org/10.1021/ie960657m
  13. J. Weitkamp, "The Influence of Chain Length in Hydrocracking and Hydroisomerization of n-Alkanes", ACS Symposium Series: American Chemical Society, (1975).
  14. H. V. Calemma, S. Correra, C. Perego, P. Pollesel, L. Pellegrini, "Hydroconversion of Fischer-Tropsch waxes: Assessment of the operating conditions effect by factorial design experiments", Catalysis Today, Vol. 106, pp. 282-287, (2005). https://doi.org/10.1016/j.cattod.2005.07.185
  15. J. Weitcamp, P. A. Jacobs, J. A. Martens, "Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HSZM-5 zeolite", Applied Catalysis, Vol. 8, Issue 1, pp. 123-141, (1983). https://doi.org/10.1016/0166-9834(83)80058-X
  16. R. Beecher, A. Voorhies Jr., "Hexane Isomerization over a Zeolite Catalyst", I&EC Product Research and Development, Vol.8, Issue 4, pp. 366-371, (1969). https://doi.org/10.1021/i360032a006
  17. P. Dufresne, P. H. Bigeard, A. Billon, "New developments in hydrocracking: low pressure high-conversion hydrocracking", Catalyst Today, Vol.1, No.4, pp. 367-384, (1986).
  18. G. F. Froment, "Kinetics of the hydroisomerization and hydrocracking of paraffins on a platinum containing bifunctional y-zeolite", Catalysis Today, Vol.1, pp. 455-473, (1987). https://doi.org/10.1016/0920-5861(87)80009-3
  19. F. Rebeiro, C. Marcilly, M. Guisnet, "Hydroisomerization of n-Hexane on Platinum Zeolites I. Kinetic Study of the Reaction on Platinum/Y-Zeolite Catalysts: Influence of the Platinum Content", Journal of Catalysis, Vol. 78, pp. 267-274, (1982). https://doi.org/10.1016/0021-9517(82)90311-6
  20. F. C. Price, A. J. Tulleners, C. P. Reeg, "Low pressure hydrocracking process with hydrofining of feed", U.S Patent No. 3159658A, Los Angeles, Union Oil Co. of California, (1961).
  21. V. Calemma, S. Peratello, S. Pavoni, G. Clerici, C. Perego, "Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and product properties", Studies in Surface Science and Catalysis, pp. 307-312, (2001).
  22. I. Rossetti, C. Gambaro, V. Calemma, "Hydrocracking of long chain linear paraffins", Chemical Engineering Journal, Vol. 154, pp. 295-301, (2009). https://doi.org/10.1016/j.cej.2009.03.018
  23. C. Bouchy, G. Hastoy, E. Guillon, J. A. Martens, "Fischer-Tropsch Waxes Upgrading via Hydrocracking and Selective Hydroisomerization", Oil & Gas Science and Technology - Rev. IFP, Vol. 64, No. 1, pp. 91-112, (2009). https://doi.org/10.2516/ogst/2008047
  24. A. Gutierrez, J. M. Arandes, P. Castano, M. Olazar, A. Barona, J. Bilbao, "Effect of space velocity of Light Cycle Oil over a Pt-Pd/HY zeolite catalyst", Fuel Processing Technology, Vol 95, pp. 8-15, (2012). https://doi.org/10.1016/j.fuproc.2011.11.003