DOI QR코드

DOI QR Code

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E. (Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University) ;
  • Hosseini-Hashemi, SH. (School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Faghidian, S.A. (Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University)
  • 투고 : 2018.04.09
  • 심사 : 2018.07.21
  • 발행 : 2018.10.10

초록

In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

키워드

참고문헌

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  4. Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theoret. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888
  5. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  6. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
  7. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronaut., 119, 1-12.
  8. Akgoz, B. and Civalek, O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039
  9. Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024
  10. Akhavan, H., Hashemi, S.H., Taher, H.R.D. Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation, Part I: Buckling analysis", Comput. Mater. Sci., 44(3), 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004
  11. Alijani, F., Bakhtiari-Nejad, F. and Amabili, M. (2011), "Nonlinear vibrations of FGM rectangular plates in thermal environments", Nonlin. Dyn., 66(3), 251. https://doi.org/10.1007/s11071-011-0049-8
  12. Apuzzo, A., Barretta, R., Canadija, M., Feo, L., Luciano, R. and Marotti de Sciarra, F. (2017a), "A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation", Compos. Part B, 108, 315-324. https://doi.org/10.1016/j.compositesb.2016.09.012
  13. Apuzzo, A., Barretta, R., Luciano, R., Marotti de Sciarra, F. and Penna, R. (2017b), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B, 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057
  14. Askes, H. and Aifantis, E.C. (2011), "Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results", Int. J. Sol. Struct., 48(13), 1962-1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006
  15. Barretta, R., Canadija, M., Feo, L., Luciano, R., Marotti de Sciarra, F. and Penna, R. (2018a), "Exact solutions of inflected functionally graded nano-beams in integral elasticity", Compos. Part B, 142, 273-286.
  16. Barretta, R., Canadija, M., Luciano, R. and Marotti de Sciarra, F. (2018b), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", Int. J. Eng. Sci., 126, 53-67. https://doi.org/10.1016/j.ijengsci.2018.02.012
  17. Barretta, R., Diaco, M., Feo, L., Luciano, R., Marotti de Sciarra, F. and Penna, R. (2018c), "Stress-driven integral elastic theory for torsion of nano-beams", Mech. Res. Commun., 87, 35-41. https://doi.org/10.1016/j.mechrescom.2017.11.004
  18. Barretta, R., Fabbrocino, F., Luciano, R. and Marotti de Sciarra, F. (2018f), "Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams", Phys. E, 97, 13-30. https://doi.org/10.1016/j.physe.2017.09.026
  19. Barretta, R., Faghidian, SA. and Luciano, R. (2018d), "Longitudinal Vibrations of NanoRods by StressDriven Integral Elasticity", Mech. Adv. Mater. Struct., Accepted.
  20. Barretta, R., Faghidian, SA., Luciano, R., Medaglia, CM. and Penna, R. (2018g), "Stress-driven two-phase integral elasticity for torsion of nano-beams", Compos. Part B, 145, 62-69. https://doi.org/10.1016/j.compositesb.2018.02.020
  21. Barretta, R., Luciano, R., Marotti de Sciarra, F. and Ruta, G. (2018e), "Stress-driven nonlocal integral model for Timoshenko elastic nano-beams", Eur. J. Mech. A. Sol., Accepted.
  22. Bayat, M., Bayat, M. and Pakar, I. (2018), "Nonlinear vibration of oscillatory systems using semi-analytical approach", Struct. Eng. Mech., 65(4), 409-413. https://doi.org/10.12989/SEM.2018.65.4.409
  23. Bayat, M., Bayat, M. and Pakar, I. (2014), "Forced nonlinear vibration by means of two approximate analytical solutions", Struct. Eng. Mech., 50(6), 853-862. https://doi.org/10.12989/sem.2014.50.6.853
  24. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  25. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/SSS.2016.18.4.755
  26. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/SCS.2015.18.4.1063
  27. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  28. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  29. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  30. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/SEM.2018.65.1.019
  31. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  32. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  33. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  34. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  35. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/SEM.2018.66.1.061
  36. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  37. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  38. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  39. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Addabedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  40. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  41. Chen, W.J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2
  42. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179.
  43. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352.
  44. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/GAE.2016.11.5.671
  45. Ebrahimi, F. and Barati, M.R. (2017), "Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory", Smart Mater. Struct., 26(6), 065018. https://doi.org/10.1088/1361-665X/aa6eec
  46. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  47. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  48. Faghidian, S.A. (2016), "Unified formulation of the stress field of Saint-Venant's flexure problem for symmetric cross-sections", Int. J. Mech. Sci., 111-112, 65-72.
  49. Faghidian, S.A. (2017), "Unified formulations of the shear coefficients in Timoshenko beam theory", J. Eng. Mech., 143(9) 06017013-1:8. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001297
  50. Faghidian, S.A. (2018a), "On non-linear flexure of beams based on non-local elasticity theory", Int. J. Eng. Sci., 124, 49-63. https://doi.org/10.1016/j.ijengsci.2017.12.002
  51. Faghidian, S.A. (2018b), "Reissner stationary variational principle for nonlocal strain gradient theory of elasticity", Eur. J. Mech. A. Sol., 70, 115-126.
  52. Faghidian, S.A. (2018c), "Integro-differential nonlocal theory of elasticity", Int. J. Eng. Sci., 129, 96-110. https://doi.org/10.1016/j.ijengsci.2018.04.007
  53. Gholami, R. and Ansari, R. (2017), "A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezomagnetic rectangular nanoplates with various edge supports", Compos. Struct., 166, 202-218. https://doi.org/10.1016/j.compstruct.2017.01.045
  54. Gholami, R. and Ansari, R. (2018), "Grain size and nanoscale effects on the nonlinear pull-in instability and vibrations of electrostatic actuators made of nanocrystalline material", Mater. Res. Expr., 5(1), 015012. https://doi.org/10.1088/2053-1591/aaa048
  55. Gurses, M., Civalek, O., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first‐order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  56. Haghani, A., Mondali, M. and Faghidian, S.A. (2018), "Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination", Acta Mech., 229(4), 1631-1648. https://doi.org/10.1007/s00707-017-2072-4
  57. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  58. He, X.Q., Wang, J.B., Liu, B. and Liew, K.M. (2012), "Analysis of nonlinear forced vibration of multi-layered graphene sheets". Comput. Mater. Sci., 61, 194-199.
  59. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  60. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
  61. Houari, M.S.A., Tounsi, A. and Beg, O.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111.
  62. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  63. Huang, X.L. and Shen, H.S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Sol. Struct., 41, 2403-2427.
  64. Jadhav, P.A. and Bajoria, K.M. (2013), "Free and forced vibration control of piezoelectric FGM plate subjected to electro-mechanical loading", Smart Mater. Struct., 22(6), 065021. https://doi.org/10.1088/0964-1726/22/6/065021
  65. Jomehzadeh, E. and Saidi, A.R. (2011), "A study on large amplitude vibration of multilayered graphene sheets", Comput. Mater. Sci., 50(3), 1043-1051. https://doi.org/10.1016/j.commatsci.2010.10.045
  66. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/SCS.2017.25.3.361
  67. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/SCS.2018.27.2.201
  68. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264.
  69. Kargarnovin, M.H., faghidian, S.A., Farjami, Y. and Farrahi, G.H. (2010), "Application of homotopy-padé technique in limit analysis of circular plates under arbitrary rotational Symmetric loading using von-mises yield criterion", Commun. Nonlin. Sci. Numer. Simulat., 15(4), 1080-1091.
  70. Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and a generalized differential quadrature method", Mater. Res. Expr., 4(6), 065003. https://doi.org/10.1088/2053-1591/aa7111
  71. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  72. Kitipornchai, S., He, X.Q. and Liew, K.M. (2005), "Continuum model for the vibration of multilayered graphene sheets", Phys. Rev. B, 72(7), 075443.
  73. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
  74. Liao, S. (2012), "Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, Beijing, China.
  75. Mahmoudpour, E., Hosseini-Hashemi, S.H. and Faghidian, S.A. (2018), "Non-linear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model", Appl. Math. Modell., 57, 302-315.
  76. Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017a), "Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations", Phys. B: Cond. Matt., 521, 102-111. https://doi.org/10.1016/j.physb.2017.06.058
  77. Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017b), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Phys. B: Cond. Matt., 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030
  78. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
  79. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  80. Mirzaei, M. and Kiani, Y. (2017), "Nonlinear free vibration of FG-CNT reinforced composite plates", Struct. Eng. Mech., 64(3), 381-390. https://doi.org/10.12989/SEM.2017.64.3.381
  81. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  82. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  83. Qian, Y.H. and Zhang, Y.F. (2017), "Optimal extended homotopy analysis method for multi-degree-of-freedom nonlinear dynamical systems and its application", Struct. Eng. Mech., 61(1), 105-116. https://doi.org/10.12989/sem.2017.61.1.105
  84. Rajabi, K. and Hosseini-Hashemi, S. (2017), "Size-dependent free vibration analysis of first-order shear-deformable orthotropic nanoplates via the nonlocal strain gradient theory", Mater. Res. Expr., 4(7), 075054. https://doi.org/10.1088/2053-1591/aa7e69
  85. Shooshtari, A. and Khadem, S.E. (2006), "A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates", Struct. Eng. Mech., 24(5), 543-560. https://doi.org/10.12989/sem.2006.24.5.543
  86. Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/SEM.2017.63.3.401
  87. Wang, R.T. and Kuo, N.Y. (1999), "Nonlinear vibration of Mindlin plate subjected to moving forces including the effect of weight of the plate", Struct. Eng. Mech., 8(2), 151-164. https://doi.org/10.12989/sem.1999.8.2.151
  88. Wang, Y.Q. and Zu, J.W. (2017), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/10.1088/1361-665X/aa8429
  89. Wang, Y., Li, F., Jing, X. and Wang, Y. (2015), "Nonlinear vibration analysis of double-layered nanoplates with different boundary conditions", Phys. Lett. A, 379(24-25), 1532-1537. https://doi.org/10.1016/j.physleta.2015.04.002
  90. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  91. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/SSS.2018.21.1.065
  92. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/GAE.2018.14.6.519
  93. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  94. Zhao, Y.B., Sun, C.S., Wang, Z.Q. and Peng, J. (2014), "Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method", Struct. Eng. Mech., 50(4), 487-500. https://doi.org/10.12989/sem.2014.50.4.487
  95. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017). "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145
  96. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.103