DOI QR코드

DOI QR Code

Study on the Tree Height Using Unmanned Aerial Photogrammetry Method

무인항공사진측량 기법을 적용한 수고 산정 연구

  • 방대식 (상지대학교 토목공학과) ;
  • 이동국 (상지대학교 토목공학과) ;
  • 양승룡 (여주대학교 도시공간디자인과) ;
  • 이현직 (상지대학교 건설시스템공학과)
  • Received : 2018.08.01
  • Accepted : 2018.08.28
  • Published : 2018.09.30

Abstract

Tree height is information that is used as a parameter for variety of tasks related to forests. Specifically, customized topics related to forests such as afforestation map are also used for production. In order to calculate tree height information, a field survey or drawing was using aerial photographs. However, there is a problem that is costing a lot of time and money. Therefore, it was suggested to calculate tree height using aerial photographs taken every two years. Thus, the method for calculating tree heights was validated by unmanned aerial photogrammetry, and tree heights were calculated using outputs generated by unmanned aerial photogrammetry applied to the unmanned aerial photograph and Aerial photograph DB. The comparison of calculated tree heights shows that the measures proposed in this study are efficient. and We expect to improve the usability of aerial photographs DB.

수고는 산림과 관련된 다양한 업무에서 매개변수로 사용되는 정보이다. 특히 맞춤형 조림지도 제작과 같은 산림관련 주제도 제작에 이용된다. 이러한 수고 정보를 산정하기 위해서 기존에는 현장조사나 항공사진의 도화방식으로 수행하였다. 그러나 많은 시간과 비용이 투자된다는 문제점이 있다. 따라서 본 연구에서는 2년 주기로 촬영되는 항공사진을 이용한 수목의 수고를 산정하는 방안을 제시하고자 하였다. 이에 무인항공사진측량을 통한 수고 산정 방안을 검증하고, 무인항공사진 및 항공사진 DB에 무인항공사진측량 기법을 적용하여 생성된 산출물을 이용해 수고를 산정하였다. 산정된 수고를 비교한 결과 본 연구에서 제시한 수고 산정 방안이 효율적인 것으로 판단되며, 항공사진 DB의 활용성을 제고할 수 있을 것으로 기대된다.

Keywords

References

  1. Forest Geospatial Information Service, 2017, http://www.forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/fgis/UI_KFS_5002_020400.html&mn=KFS_02_04_03_04_07&orgId=fgis.
  2. Kim, E.M. 2013. Extraction of the tree regions in forest areas using LIDAR data and Ortho-image. Journal of the Korean Society for GeoSpatial Information System, 21(2):27-34. https://doi.org/10.7319/kogsis.2013.21.2.027
  3. Kim, D.Y., Y.W. Jang, Y.W. Choi, D.S. Beai and G.S. Cho. 2009. A study information extraction using airborne LiDAR data. Journal of the Korean Society of Civil Engineers seasonal conference. pp.1575-1578.
  4. Lee, D.G., K.D. Kim, S.R. Yang and H.J. Lee. 2017. Study on the possibility of Forest Geospatial Information Generation using past panchromatic forest aerial photograph scanning database. Journal of the Korean Society for Geospatial Information Science 24(4):107-116.
  5. Lee, H.J. and J.H. Ru. 2012. Application of LiDAR data & high-resolution satellite image for calculate forest biomass. Journal of the Korean Society for GeoSpatial Information System 20(1):53-63. https://doi.org/10.7319/kogsis.2012.20.1.053
  6. Lee, S.J., J.Y. Park and E.M. Kim. 2014. Development of automated model of tree extraction Using aerial LIDAR data. Journal of the Korea Academia-Industrial cooperation Society 15(5):3213-3219. https://doi.org/10.5762/KAIS.2014.15.5.3213
  7. Pascual, C., A. Garcia-Abril, L. G. Garcia-Montero, S. Martin-Fernandez and W. B. Cohen. 2008. Object-based semi-automatic approach for forest structure characterization using LiDAR data in heterogeneous Pinus sylvestris stands. Forest Ecology and Management. 255:3677-3685. https://doi.org/10.1016/j.foreco.2008.02.055
  8. Wulder, M.A. and D. Seemann. 2003. Forest inventory height update through the integration of lidar data with segmented Landsat imagery, Can. J. Remote Sensing, 29(5):536-543. https://doi.org/10.5589/m03-032
  9. Zimble, D.A., D.L. Evan, G.C. Carlson, R.C. Parker, S.C. Grado and P.D. Gerard. 2003. Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment. 87:171-182. https://doi.org/10.1016/S0034-4257(03)00139-1

Cited by

  1. A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon vol.24, pp.4, 2021, https://doi.org/10.11628/ksppe.2021.24.4.441