DOI QR코드

DOI QR Code

Pressure-load Calibration of Multi-anvil Press and the Thermal Gradient within the Sample Chamber

멀티 앤빌 프레스의 압력-부하 보정 작업과 시료 내의 온도구배 연구

  • Kim, Eun Jeong (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 김은정 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2018.09.10
  • Accepted : 2018.09.27
  • Published : 2018.09.30

Abstract

Multi-anvil press (MAP) is one of the high pressure apparatuses and often generates the pressure-conditions ranging from 5 to 25 GPa and temperature-conditions up to $2,300^{\circ}C$. The MAP is, therefore, suitable to explore the pressure-induced structural changes in diverse earth materials from Earth's mantle and the bottom of the mantle transition zone (~660 km). In this study, we present the experimental results for pressure-load calibration of the 1,100-ton multi-anvil press equipped in the authors' laboratory. The pressure-load calibration experiments were performed for the 14/8 step, 14/8 G2, 14/8 HT, and 18/12 assembly sets. The high pressure experiments using ${\alpha}$-quartz, wollastonitestructure of $CaGeO_3$, and forsterite as starting materials were analyzed by powder X-ray diffraction spectroscopy. The phase transition of each mineral indicates the specific pressure that is loaded to a sample at $1,200^{\circ}C$: a transition of ${\alpha}$-quartz to coesite at 3.1 GPa, that of garnet-structure of $CaGeO_3$ to perovskite-structure at 5.9 GPa, that of coesite to stishovite at 9.2 GPa, and that of forsterite to wadsleyite at 13.6 GPa. While the estimated pressure-load calibration curve is generally consistent with those obtained in other laboratories, the deviation up to 50 tons is observed at high pressure above 10 GPa. This is partly because of the loss of oil pressure at high pressure resulting from the differences in a sample chamber, and the frictional force between pressure medium and second anvil. We also report the ${\sim}200^{\circ}C/mm$ of thermal gradient in the vertical direction of the sample chamber of 14/8 HT assembly. The pressure-load calibration curve and the observed thermal gradient within the sample chamber can be applied to explain the structural changes and the relevant macroscopic properties of diverse crystalline and amorphous earth materials in the mantle.

멀티 앤빌 프레스(multi-anvil press)는 일반적으로 5-25 GPa의 압력범위와 ${\sim}2,300^{\circ}C$의 온도범위를 구현할 수 있는 고압 기기로, 지구과학에서는 상부맨틀-맨틀전이대까지의 지구 구성물질의 구조를 연구하는 데 도움이 된다. 본 연구에서는 광물의 상전이를 이용한 멀티 앤빌 프레스에 대한 압력-부하 보정(pressure-load calibration) 과정을 소개하고, 시료실(sample chamber) 내에 존재할 수 있는 온도구배에 대해서 논의하였다. 압력-부하 보정은 14/8 G2, 14/8 step, 14/8 HT 조립세트(assembly set)와 18/12 조립세트에 대해 1,100톤 멀티 앤빌 프레스를 이용하여 수행했다. 초기 물질로 석영, 규회석구조의 $CaGeO_3$, 포르스테라이트를 사용했고, 고압상의 동정은 XRD 분석을 통해 수행하였다. 광물의 상전이를 통해 $1,200^{\circ}C$에서 시료에 가해지는 압력을 유추할 수 있었으며, ${\alpha}$-석영에서 코에사이트로의 상전이는 3.1 GPa, 석류석 구조의 $CaGeO_3$에서 페로브스카이트 구조의 $CaGeO_3$로의 상전이는 5.9 GPa, 코에사이트에서 스티쇼바이트로의 상전이는 9.2 GPa, 포르스테라이트에서 와즐리아이트로의 상전이는 13.6 GPa의 압력 확인에 이용했다. XRD 결과로 획득한 압력-부하 보정 곡선은 기존에 보고된 유사한 기기의 압력-부하 보정 곡선에 비해 동일 압력을 구현하기 위해 50톤 가량의 유압이 더 필요한 것으로 확인됐다. 이러한 차이는 시료실의 크기 및 조립세트의 압력 매체(pressure medium)와 이차앤빌 사이의 마찰력으로부터 기인한 유압 손실에 의한 것으로 생각된다. 또한 본 연구에서는 14/8 HT 조립세트에서의 시료실 내의 온도구배를 확인했다. 특히 열전대(thermocouple)의 위치 변화에 따라 시료실 높이에 평행한 방향으로 약 ${\sim}200^{\circ}C/mm$에 해당하는 온도구배가 존재한다. 본 연구로부터 구한 멀티 앤빌 프레스의 압력-부하 보정 곡선과 시료실 내의 온도구배 값은 앞으로 맨틀 내에서의 다양한 비정질 및 결정질의 지구물질에 대한 원자 구조의 변화와 그에 따른 물성 변화를 설명하는 데 적용할 수 있다.

Keywords

References

  1. Errandonea, D. (2013) High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt. Physical Review B 87, 054108. https://doi.org/10.1103/PhysRevB.87.054108
  2. Ito, E. (2007) Theory and Practice - Multianvil Cells and High-Pressure Experimental Methods, (Eds.) Schubert, G., Romanowicz, B., Dziewonski, A., Treatise on Geophysics, 2, pp. 197-230.
  3. Ito, E., Katsura, T., Yamazaki, D., Yoneda, A., Tado, M., Ochi, T., Nishibara, E., and Nakamura, A. (2009) A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes. Physics of the Earth and Planetary Interiors 174, 264-269. https://doi.org/10.1016/j.pepi.2008.11.007
  4. Kavner, A. and Jeanloz, R. (1998) High-pressure melting curve of platinum. Journal of applied physics 83, 7553-7559. https://doi.org/10.1063/1.367520
  5. Kawai, N. and Endo, S. (1970) The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Review of Scientific Instruments 41, 1178-1181. https://doi.org/10.1063/1.1684753
  6. Kojitani, H., Terata, S., Ohsawa, M., Mori, D., Inaguma, Y., and Akaogi, M. (2017) Experimental and thermodynamic investigations on the stability of $Mg_{14}Si_5O_{24}$ anhydrous phase B with relevance to $Mg_2SiO_4$ forsterite, wadsleyite, and ringwoodite. American Mineralogist 102, 2032-2044. https://doi.org/10.2138/am-2017-6115
  7. Kunimoto, T., Irifune, T., and Sumiya, H. (2008) Pressure generation in a 6-8-2 type multi-anvil system: a performance test for third-stage anvils with various diamonds. High Pressure Research 28, 237-244. https://doi.org/10.1080/08957950802246530
  8. Leinenweber, K.D., Tyburczy, J.A., Sharp, T.G., Soignard, E., Diedrich, T., Petuskey, W.B., Wang, Y., and Mosenfelder, J.L. (2012) Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). American Mineralogist 97, 353-368. https://doi.org/10.2138/am.2012.3844
  9. Liebermann, R.C. (2011) Multi-anvil, high pressure apparatus: a half-century of development and progress. High Pressure Research 31, 493-532. https://doi.org/10.1080/08957959.2011.618698
  10. Mitra, N., Decker, D., and Vanfleet, H. (1967) Melting curves of copper, silver, gold, and platinum to 70 kbar. Physical Review 161, 613. https://doi.org/10.1103/PhysRev.161.613
  11. Righter, K. and Leinenweber, K., Interlaboratory Comparisons, http://multianvil.asu.edu/MainPage_compare.html.
  12. Schwarz, M.R. (2010) Multianvil calibration and education: A four probe method to measure the entire force-versus-pressure curve in a single run - performed as an interdisciplinary lab-course for students. Journal of Physics: Conference Series 215, 012193. https://doi.org/10.1088/1742-6596/215/1/012193
  13. Shatskiy, A., Katsura, T., Litasov, K.D., Shcherbakova, A.V., Borzdov, Y.M., Yamazaki, D., Yoneda, A., Ohtani, E., and Ito, E. (2011) High pressure generation using scaled-up Kawai-cell. Physics of the Earth and Planetary Interiors 189, 92-108. https://doi.org/10.1016/j.pepi.2011.08.001
  14. Stoyanov, E., Haussermann, U., and Leinenweber, K. (2010) Large-volume multianvil cells designed for chemical systhesis at high pressures. High Pressure Research 30, 175-189. https://doi.org/10.1080/08957950903422444
  15. Strong, H.M. and Bundy, F.P. (1959) Fusion curves of four group VIII metals to 100 000 atmospheres. Physical Review 115, 278-284. https://doi.org/10.1103/PhysRev.115.278
  16. Susaki, J., Akaogi, M., Akimoto, S., and Shimomura, O. (1985) Garnet-perovskite transformation in $CaGeO_3$: In-situ X-ray measurements using synchrotron radiation. Geophysical Research Letters 12, 729-732. https://doi.org/10.1029/GL012i010p00729
  17. Swamy, V., Saxena, S.K., Sundman, B., and Zhang, J. (1994) A thermodynamic assessment of silica phase diagram. Journal of Geophysical Research: Solid Earth 99, 11787-11794. https://doi.org/10.1029/93JB02968
  18. Walker, D., Carpenter, M.A., and Hitch, C.M. (1990) Some simplifications to multianvil devices for high pressure experiments. American Mineralogist 75, 1020-1028.
  19. Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Gomi, H., Vazhakuttiyakam, J., Sakurai, M., Zhang, Y., Higo, Y., and Tange, Y. (2018) High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on $CaSnO_3$ and $(Mg,Fe)SiO_3$. Comptes Rendus Geoscience, In press.
  20. Yoneda, A., Yamamoto, S., Kato, M., Sawamoto, H., and Kumazawa, M. (1984) The use of composite metal gaskets to improve pressure generation in multiple anvil devices. High Temperature-High Pressures 16, 637-656.
  21. Young, D.A. (1991) Phase diagrams of the elements. University of California Press, p. 291.