Aspects of Meta-affect According to Mathematics Learning Achievement Level in Problem-Solving Processes

문제해결 과정에서의 수학 학습 성취 수준에 따른 메타정의의 기능적 특성 비교 분석

  • Received : 2018.04.09
  • Accepted : 2018.05.18
  • Published : 2018.05.31

Abstract

Since the mathematics learning achievement level is closely related to problem-solving ability, it is necessary to understand the relationship between problem-solving ability and meta-affect ability from the point of view of general mathematics learning ability. In this study, we compared the frequency analysis and the case analysis of the functional aspects of the meta-affect in elementary school students' problem-solving processes according to mathematics learning achievement level in parallel with frequency analysis and case analysis. In other words, the frequency of occurrence of meta-affect, the frequency of meta-affective type, and the frequency of meta-functional types of meta-affect were compared and analyzed according to the mathematics learning achievement level in the collaborative problem-solving activities of small group members with similar mathematics learning achievement level. In addition, we analyzed the representative cases of meta-affect by meta-functional types according to the mathematics learning achievement level in detail. As a result, meta-affect in problem-solving processes of the upper level group acted as relatively various types of meta-functions compared to the lower level group. And, the lower level group, the more affective factors acted in the problem-solving processes.

수학 문제해결 교육 연구에 있어서 문제해결 과정에 나타나는 인지적, 정의적 요소의 상호작용 및 메타정의적 측면에 대한 연구의 비중이 점차 증가하고 있다. 이에 본 연구에서는 수학 학습 성취 수준에 따라 초등학생의 문제해결 과정에 작용하는 메타정의의 기능적 특성을 파악하기 위하여 빈도 분석과 사례 분석을 병행하였다. 수학 학습 성취 수준에 따라 협업적 문제해결 활동에서 나타나는 메타정의 출현 빈도, 메타정의 유형별 빈도, 메타정의의 메타적 기능 유형별 빈도를 비교 분석하였다. 또한, 수학 학습 성취 수준별 메타정의의 메타적 기능 유형별 사례의 분석을 통하여 메타정의의 실제적인 작용 메카니즘을 파악하였다. 그 결과, 수학 학습 성취 하 수준 집단의 문제해결 과정에서 상 수준 집단에 비해 메타정의의 출현 비율이 상대적으로 높았으며, 상 수준 집단의 메타정의는 하 수준 집단에 비해 상대적으로 다양한 유형의 메타적 기능으로 작용하였다. 이와 같은 연구 결과로부터 수학 문제해결 수업에 적용해 볼 수 있는 메타정의의 기능적 특성과 관련한 교육적 시사점을 도출하였다.

Keywords

References

  1. 강완, 김상미, 박만구, 백석윤, 오영열(2009). 초등수학교육. 서울: 경문사.
  2. 교육부(2015). 수학과 교육과정. 교육부 고시 제 2015-74호 [별책 8].
  3. 김은형, 백석윤(2008). 초등학생의 수학 학습 태도를 형성하는 요인에 대한 연구. 한국초등수학교육학회지, 12(2), 125-148.
  4. 도주원, 백석윤(2016). 수학 문제해결에서 메타정의의 기능. 한국초등수학교육학회, 20(4), 563-581.
  5. 도주원, 백석윤(2017). 수학 문제해결 과정에 작용하는 메타정의의 사회 역학적 기능. 한국수학교육학회, 18(1), 87-101.
  6. 백석윤(2016). 수학 문제해결 교육. 서울: 경문사.
  7. 이종희, 김선희(2002). 수학적 의사소통. 서울: 교우사.
  8. Carlson, M. P. & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional problem-solving framework. Educational Studies in Mathematics 58(1). 45-75. https://doi.org/10.1007/s10649-005-0808-x
  9. Chalmers, C. (2009). Group metacognition during mathemaitcal problem solving. In R. Hunter, B. Bicknell, & T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia 1 (pp. 105-112). Palmerston North. NZ: MERGA.
  10. Damon, W. & Phelps, E. (1989). Critical distinctions among three approaches to peer education. International Journal of Educational Research 13, 9-19. https://doi.org/10.1016/0883-0355(89)90013-X
  11. DeBellis, V. A., & Goldin, G. A. (1997). The affective domain in mathematical problem-solving. In E. Pekhonen (Ed.), Proceedings of the PME 21, 2 (pp. 209-216). Helsinki, Finland: University of Helsinki Dept. of Teacher Education.
  12. DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics, 63(2), 131-147. https://doi.org/10.1007/s10649-006-9026-4
  13. English, L. D & Halford, G. S. (1995). Mathematics Education: Model and Processes. Lawrence Erlbaum Associates, Inc. 고상숙, 고호경, 박만구, 이중권, 정인철, 황우형 역(2003). 수학교육론. 서울: 경문사.
  14. Fawcett, L. M. & Garton, A. F. (2005). The effect of peer collaboration on children's problem-solving ability. British Journal of Education Psychology 75, 157-169. https://doi.org/10.1348/000709904X23411
  15. Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 59-72). Dordrecht: Kluwer.
  16. Goldin, G. A. (2009). The affective domain and students' mathematical inventiveness. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp. 181-194). Rotterdam: Sense Publishers.
  17. Goldin, G. A. (2014). Perspectives on emotion in mathematical engagement, learning, and problem solving. In R. Pekrun and L. Linnenbrink-Garcia (Eds.), International Handbook of Emotions in Education (pp. 391-414). New York: Routledge.
  18. Gomez-Chacon, I. M. (2000). Affective influence in the knowledge of mathematics. Educational Studies in Mathematics, 43, 149-168. https://doi.org/10.1023/A:1017518812079
  19. Goos, M. (1995). Metacognitive knowledge, belief and classroom mathematics. In B. Atweh & S. Flavel (Eds.), Galtha(Proceedings of the 18th annual conference of the Mathematics Education Research Group of Australasia) (pp. 300-306). Darwin: MERGA.
  20. Goos, M. & Galbraith, P. (1996). Do it this way! Metaconitive strategies in collaborative mathematical problem solving. Educational studies in mathematics 30(3), 229-260. https://doi.org/10.1007/BF00304567
  21. Goos, M., Galbraith, P. & Renshaw, P. (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in smallgroup problem solving. Educational studies in mathematics 49(2), 193-223. https://doi.org/10.1023/A:1016209010120
  22. Gottman, J. M., Katz, L. F., & Hooven, C. (1996). Parental meta-emotion philosophy and the emotional life of families: Theoretical models and preliminary data. Journal of Family Psychology, 10(3), 243-268. https://doi.org/10.1037/0893-3200.10.3.243
  23. Hannula, M. S., Evans, J., Philippou, G., & Zan, R. (2004). Affect in mathematics education- exploring theoretical Frameworks. Proceedings of the 28th Conference of International Group for Psychology of Mathematics Education (pp. 107-136). Bergen, Norway: Bergen University College.
  24. Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). Self-confidence, interest, beliefs, and metacognition: Key influences on problem-solving behavior. In D. B. McLeod & V. M. Adams (Eds.), Affect and mathematical problem solving: A new perspective (pp. 75-88). New York: Springer-Verlag.
  25. Malmivuori, M. L. (2001). The dynamics of affect, cognition, and social environment in the regulation of personal learning processes: The case of mathematics. Research Report, 172, Helsinki: University of Helsinki.
  26. Malmivuori, M. L. (2006). Affect and self-regulation. Educational Studies in Mathematics, 63, 149-164. https://doi.org/10.1007/s10649-006-9022-8
  27. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575-596). New York: Macmillan.
  28. Moscucci, M. (2010). Why is there not enough fuss about affect and meta-affect among mathematics teacher? In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds), Proceedings of the CERME-6 (pp. 1811-1820). INRP, Lyon.
  29. Polya, G. (1971). How to solve it. Princeton University Press. 우정호 역(2002). 어떻게 문제를 풀 것인가- 수학적 사고 방법. 서울: 교우사.
  30. Schoenfeld, A. H. (1989). Ideas in the air: Speculations on small group learning, environmental and cultural influences on cognition, and epistemology. International Journal of Educational Research 13, 71-88. https://doi.org/10.1016/0883-0355(89)90017-7
  31. Schloglmann, W. (2005). Meta-affect and strategies in mathematics learning. In M. Bosch (Ed), Proceeding of CERME-4 (pp. 275-284). Barcelona: FundEmi IQS.
  32. Schloglmann, W. (2009). Categories of affect- some remarks. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds), Proceeding of CERME-6 (pp. 164-173). INRP, Lyon.
  33. Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem-solving instruction. In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp. 33-60). NJ: Hillsdale.
  34. Yin, R. K. (2014). Case study research: design and methods(5th ed.). Thousand Oaks, CA: Sage.