References
- An, B. J. The material of natural anti-bacterial agents for the food preservative. J. Kor. Soc. Food. Sci. Nutr. 4: 5-16 (1999)
- Ankita, C., and Jayanthi, A., Microbial Contamination, Prevention, and Early Detection in Food Industry. Handbook of Food Bioengineering:21-47 (2018)
- Badr, S., Karem, H. A., Hussein, H. and Hadedy, D. E. Characterization of nisin produced by Lactococcus lactis. Int. J. Agric. Biol. 7: 499-503 (2005)
-
Bhandari, B. R., D'Arc, B. R., and ThiBich, L. L. Lemon Oil to
${\beta}$ -Cyclodextrin Ratio Effect on the Inclusion Efficiency of${\beta}$ -Cyclodextrin and the Retention of Oil Volatiles in the Complex. J. Agric. Food Chem, 46: 1494-1499 (1998) https://doi.org/10.1021/jf970605n - Bishnu, P. C., Zeev W. and Leah, T. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Industrial Crops and Prod. 26: 109-115 (2007) https://doi.org/10.1016/j.indcrop.2007.02.005
- Borges, A., Abreu, A. C., Ferreira, C., Saavedra, M. J., Simoes, L. C. and Simoes, M. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J. Food Sci. Technol. 52:4737-4748 (2015) https://doi.org/10.1007/s13197-014-1533-1
- Branen, J. K. and Davidson, P. M. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ehtylenediamine tetra acetic acid and lactoferrin. J. Food Microbiol. 90: 63-74 (2004) https://doi.org/10.1016/S0168-1605(03)00172-7
-
Chen, J., Zheng, J., McClements, D. J., & Xiao, H. (2014). Tangeretinloaded protein nanoparticles fabricated from zein/
${\beta}$ -lactoglobulin:Preparation, characterization, and functional performance. Food chemistry, 158, 466-472. https://doi.org/10.1016/j.foodchem.2014.03.003 -
Chen, X., Chen, R., Guo, Z., Li, C., and Li, P. The preparation and stability of the inclusion complex of astaxanthin with
${\beta}$ -cyclodextrin. Food Chem, 101: 1580-1584 (2007) https://doi.org/10.1016/j.foodchem.2006.04.020 -
Choi, M. J., Ruktanonchai, U., Min, S. G., Chun, J. Y., and Soottitantawat, A. Physical characteristics of fish oil encapsulated by
${\beta}$ -cyclodextrin using an aggregation method or polycaprolactone using an emulsion-diffusion method. Food Chem, 119: 1694-1703 (2010) https://doi.org/10.1016/j.foodchem.2009.09.052 -
Coleman, A. W., Munoz, M., Chatjigakis, A. K., and Cardot, P. Classification of the solubility behaviour of
${\beta}$ -cyclodextrin in aqueous-CO-solvent mixtures. J. Phys. Org. Chem, 6: 651-659 (1993) https://doi.org/10.1002/poc.610061203 - Davidson, P. M. and Post, L. S. Naturally occurring and miscellaneous food antimicrobials. In Antimicobials in foods. Branen, A. L. and Davidson, P. M. (Eds.), Marcel Dekker, Inc., New York. p. 371 (1983)
- Denyer, S. P. and Stewart, G. S. A. B. 1998. Mechanisms of action of disinfectants. Int. Biodeter. Biodegr. 41: 261-268 (1998) https://doi.org/10.1016/S0964-8305(98)00023-7
-
Gomes, L. M. M., Petito, N., Costa, V. G., Falcao, D. Q., and de Lima Araujo, K. G. Inclusion complexes of red bell pepper pigments with
${\beta}$ -cyclodextrin: Preparation, characterisation and application as natural colorant in yogurt. Food Chem, 148: 428-436 (2014) https://doi.org/10.1016/j.foodchem.2012.09.065 - Gomez-Estaca, J., Balaguer, M. P., Gavara, R., & Hernandez-Munoz, P. (2012). Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids, 28(1), 82-91. https://doi.org/10.1016/j.foodhyd.2011.11.013
- Gomez-Estaca, J., Balaguer, M. P., Lopez-Carballo, G., Gavara, R., & Hernandez-Munoz, P. (2017). Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocolloids, 70, 313-320. https://doi.org/10.1016/j.foodhyd.2017.04.019
- Hedges, A. R., Shieh, W. J., and Sikorski, C. T. Use of Cyclodextrins for Encapsulation in the Use and Treatment of Food Products. In Encapsulation and Controlled Release of Food Ingredients, vol. 590 (pp. 60-71): American Chemical Society. (1995)
- Hemmila, M. R., Mattar, A., Taddonio, M. A., Arbabi, S., Hamouda, T., Ward, P. A., Wang, S. C. and Baker, J. R., Jr. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery. 148: 499-509 (2010) https://doi.org/10.1016/j.surg.2010.01.001
- Hill, L. E., Gomes, C., and Taylor, T. M. Characterization of betacyclodextrin inclusion complexes containing essential oils (transcinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51: 86-93 (2013) https://doi.org/10.1016/j.lwt.2012.11.011
- Hwang, J. K., Kim, H. J., Shim, J. S. and Pyun, Y. R. Bactericidal activity of chitosan on streptococcus mutans. Korean J. Food Sci. Technol. 31: 522-526 (1999)
- Hwang, J. K., Shim, J. S. and Pyun, Y. R. Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia 71: 321-323 (2000) https://doi.org/10.1016/S0367-326X(99)00170-7
- Hwang, Y. Y., Ramalingam, K., Bienek, D. R., Lee, V., You, T. and Alvareza, R. Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemoth. 57(8): 3568-3575 (2013) https://doi.org/10.1128/AAC.02109-12
- Irani, M., Sarmadi, M., Bernard, F., Ebrahimi Pour, G. H. and Shaker B. H. Leaves antimicrobial activity of Glycyrrhiza glabraL. Iran J. Pharm. Res. 9: 425-428 (2010)
- Isabel, C., Margarita, A., Filomena, S. and Cristina, N. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Sci. Emerging Technol. 36: 26-33 (2016) https://doi.org/10.1016/j.ifset.2016.05.013
- Kang, C. H., Kim, Y. G., Han, S. H., Jeong, H. L. and Paek, N. S. Antibacterial activity and probiotic properties of lactic acid bacteria from Korean intestine origin. Korean Soc. Biotechnol. Bioengineering J. 32:153-159 (2017)
-
Kito, M., Onji, Y., Yoshida, T. and Nagasawa, T. Occurrence of
${\varepsilon}$ -poly-L-lysine-degrading enzyme in${\varepsilon}$ -poly-L-lysine-tolerant Sphingobacterium multivorumOJ10: purification and characterization. FEMS Microbiol. Lett. 207: 147-151 (2002) -
Ko, E. M. and Kim, B. Y. Antimicrobial activity of
${\varepsilon}$ -polylysine mixtures against food-born pathogens. J. Kor. Sci. Food Sci. Nutr. 33: 705-710 (2004) https://doi.org/10.3746/jkfn.2004.33.4.705 - Kumar, M. N. V. R. A review of chitin and chitosan applications. Reactive & Functional Polymers. 46: 1-27 (2000) https://doi.org/10.1016/S1381-5148(00)00038-9
- Lee, Y. C., Oh, S. W. and Hong, H. D. Antimicrobial characteristics of edible medicinal herbs extracts. Kor. J. Food Sci. Technol. 34: 700-709 (2002)
- Lee, Y. E. and Yoo, I. S. Effect of Storage temperature on the dispersion stability of O/W Nano-emulsions. Korean Soc. Biotech. Bioeng. J. 29(5): 385-391 (2014)
- Levinson, Y., Ish-Shalom, S., Segal, E., &Livney, Y. D. (2016). Bioavailability, rheology and sensory evaluation of fat-free yogurt enriched with VD 3 encapsulated in re-assembled casein micelles. Food & function, 7(3), 1477-1482. https://doi.org/10.1039/C5FO01111F
- Li, K. K., Yin, S. W., Yin, Y. C., Tang, C. H., Yang, X. Q., & Wen, S. H. (2013). Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization. Journal of Food Engineering, 119(2), 343-352. https://doi.org/10.1016/j.jfoodeng.2013.05.038
- Liu, Y., Ying, D., Cai, Y., & Le, X. (2017). Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocolloids, 72, 304-311. https://doi.org/10.1016/j.foodhyd.2017.06.007
- Lopez, M. D., Maudhuit, A., Pascual-Villalobos, M. J., and Poncelet, D. Development of Formulations to Improve the Controlled-Release of Linalool to Be Applied As an Insecticide. J. Agric. Food Chem, 60:1187-1192 (2012) https://doi.org/10.1021/jf204242x
- Lu, Y., Joerger, R. and Wu, C. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellariabaicalensis Georgi. J. Agric. Food Chem. 59: 10934-10942 (2011) https://doi.org/10.1021/jf202741x
- Mahmoud. K. F., Ramada, K. M. and Ashoush, I. S. Nanoencapsulation and nanoemulsion of bioactive compounds to enhance their antioxidant activity in food. Int. J. Food Sci. Tech. 4(3): 1-21 (2014)
-
Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., and Matioli, G. Curcumin-
${\beta}$ -cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem, 153: 361-370 (2014) https://doi.org/10.1016/j.foodchem.2013.12.067 - Mao, L., Roos, Y. H., Biliaderis, C. G. and Miao, S. Food emulsions as delivery systems for flavor compounds: A review. Food Sci. Nutr. 57(15): 3173-3187 (2017)
- Masschalck, B. and Michiels C. W. Antimicrobial properties of lysozyme in relation to food borne vegetative bacteria. Critical Rev. Microbiol. 29:191-214 (2003) https://doi.org/10.1080/713610448
- Nunes, I. L., and Mercadante, A. Z. Encapsulation of lycopene using spray-drying and molecular inclusion processes. Brazilian Archives of Biology and Technology, 50: 893-900 (2007) https://doi.org/10.1590/S1516-89132007000500018
-
Oancea, A. M., Aprodu, I., Ghinea, I. O., Barbu, V., Ioniţa, E., Bahrim, G., ... & Stanciuc, N. (2017). A bottom-up approach for encapsulation of sour cherries anthocyanins by using
${\beta}$ -lactoglobulin as matrices. Journal of Food Engineering, 210, 83-90. https://doi.org/10.1016/j.jfoodeng.2017.04.033 - Oliveira, J. R., Jesus, D., Figueira, L. W., Oliveira, F. E., Pacheco, S. C., Camargo, S. E., Jorge, A. O. and Oliveira, L. D. Biological activities of Rosmarinus officinalisL. extract as analyzed in microorganisms and cells. Exp. Biol. Med. 242: 625-634 (2017) https://doi.org/10.1177/1535370216688571
- Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., and Simal-Gandara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65: 157-164 (2017) https://doi.org/10.1016/j.foodhyd.2016.11.014
- Rho, S. J., Mun, S., Hong, J. S., Kim, Y. L., Do, H. V., Kim, Y. W., Han, S. I., and Kim, Y. R. Physicochemical interactions of cycloamylose with phenolic compounds. Carbohydr. Polym, 174: 980-989 (2017) https://doi.org/10.1016/j.carbpol.2017.07.026
- Santos, E. H., Kamimura, J. A., Hill, L. E., and Gomes, C. L. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT-Food Science and Technology, 60: 583-592 (2015) https://doi.org/10.1016/j.lwt.2014.08.046
- Sebastien, F. and Robert, W. E. Lactoferrin-a multifunctional protein with antimicrobial properties. Molecular Immunol. 40: 395-405 (2003) https://doi.org/10.1016/S0161-5890(03)00152-4
- Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H. and Kapila, Y. L. Biomedical applications of nisin. J. Appl. Microbiol. 120: 1449-1465 (2016) https://doi.org/10.1111/jam.13033
- Slomkowski, S., Aleman, J. V., Gilbert, R. G., Hess, M., Horie, K., Jones, R. G., Kubisa, P., Meisel, I., Mormann, W., Penczek, S. and Stepo, R. F. T. Terminology of polymers and polymerization processes in dispersed systems. Pure Appl. Chem. 83: 2229-2259 (2011) https://doi.org/10.1351/PAC-REC-10-06-03
- Sylvester, W. S., Son, R., Lew, K. F. and Rukayadi, Y. Antibacterial activity of java turmeric (Curcuma xanthorrhizaRoxb.) extract against Klebsiella pneumoniaisolated from several vegetables. Int. Food Res. J. 22: 1770-1776 (2015)
- Szente, L., and Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol, 15: 137-142 (2004) https://doi.org/10.1016/j.tifs.2003.09.019
-
Szente, L., and Szejtli, J. Molecular Encapsulation of Natural and Synthetic Coffee Flavor with
${\beta}$ -Cyclodextrin. J. Food Sci, 51: 1024- 1027 (1986) https://doi.org/10.1111/j.1365-2621.1986.tb11224.x - Takii, H., Kometani, T., Nishimura, T., Kuriki, T., and Fushiki, T. A Sports Drink Based on Highly Branched Cyclic Dextrin Generates Few Gastrointestinal Disorders in Untrained Men during Bicycle Exercise Food Sci. Technol. Res, 10: 428-431 (2004) https://doi.org/10.3136/fstr.10.428
-
Tang, P., Li, S., Wang, L., Yang, H., Yan, J., and Li, H. Inclusion complexes of chlorzoxazone with
${\beta}$ - and hydroxypropyl-${\beta}$ - cyclodextrin: Characterization, dissolution, and cytotoxicity. Carbohydr. Polym, 131: 297-305 (2015) https://doi.org/10.1016/j.carbpol.2015.05.055 - Teng, Z., Luo, Y., & Wang, Q. (2012). Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. Journal of agricultural and food chemistry, 60(10), 2712-2720. https://doi.org/10.1021/jf205238x
- Truong, G. K. and Yi, M. G. Molecular dynamics simulation studies of the effects of the protonation state of chitosan in interactions with bacterial membranes. Korean J. Fish Aquat. Sci. 49: 815-822 (2016)
- Wang, L., Yang, R., Yuan B., Liu, Y. and Lium C. The antiviral and antimicrobial activities of licorice, a widely-used chinese herb. Acta PharmaceuticaSinica B. 5: 310-315 (2015)
-
Wang, T., Li, B., Si, H., Lin, L., and Chen, L. Release characteristics and antibacterial activity of solid state eugenol/
${\beta}$ -cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem, 71: 207-213 (2011) https://doi.org/10.1007/s10847-011-9928-3 - Wang, X., Jiang, Y., Wang Y. W., Huang, M. T., Ho, C. T. and Huang, Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 108(2): 419-424 (2008) https://doi.org/10.1016/j.foodchem.2007.10.086
- Wang, Y., Mcallister, T. A., Yanke, L. J. and Cheeke, P. R. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88: 887-896 (1992)
- Weiss, J., Takhistov, P. and McClements, D. J. Functional materials in food nanotechnology. J. Food Sci. 71: 107-116 (2006) https://doi.org/10.1111/j.1750-3841.2006.00195.x
- Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method. LWT-Food Science and Technology, 48(2), 283-290. https://doi.org/10.1016/j.lwt.2012.03.027
- Wulff, E. G., Zida, E., Torp, J. and Lund, O. S. Yucca schidigera extract: a potential biofungicide against seedborne pathogens of sorghum. Plant Pathology. 61: 331-338 (2012) https://doi.org/10.1111/j.1365-3059.2011.02517.x
- Yan, Y., Xing, L. J., Zhou, G. H. and Zhang, W. G. Antioxidative and antibacterial activities of rosemary extract in raw ground pork patties. J. Food Nutr. Res. 4: 806-813 (2016)
-
Yoshida, T. and Nagasawa, T.
${\varepsilon}$ -Poly-L-lysine: microbial production, biodegradation and application potential. Appl. Microbiol, Biotechnol. 62: 21-26 (2003) https://doi.org/10.1007/s00253-003-1312-9 - Zhao, M., Wang, H., Yang, B., and Tao, H. Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem, 120: 1138-1142 (2010) https://doi.org/10.1016/j.foodchem.2009.11.044
- Zorzi, G. K., Caregnato, F., Moreira, J. C. F., Teixeira, H. F. and Carvalho, E. L. S. Antioxidant effect of nanoemulsions containing extract of Achyroclinesatureioides (Lam) D.C. - Asteraceae. Am. Assoc. PS Pharm. Sci. 17(4): 844-850 (2015)